DISCUSSION
The results of this analysis highlight major conclusions regarding the development of solar microgrids as energy access solutions. First, the PV-Battery and, to a lesser extent, the PV-Hybrid microgrid systems have significantly lower climate change, particulate matter, photochemical oxidants, and acidification impacts compared to the PV-Diesel system, home diesel generators, and central grid expansion. This highlights the environmental and health advantages of microgrid systems with a battery backup, compared to systems that use a diesel generator, in regions with high insolation and low demand such as Kenya. This distinction in the particulate matter, photochemical oxidants, and acidification impacts is particularly significant for off-grid communities due to the local nature of these effects. While the PV-Battery design does affect these impact categories, the majority of these impacts result from the manufacturing stage, rather than during the use phase on-site in off-grid communities.

TAKEAWAYS FOR STAKEHOLDERS

• PV microgrids are adaptive and potentially feasible long term energy access solutions.
• PV microgrids with a battery backup provide clear environmental and health benefits, compared to other potential energy access options.

• Focus on system wide comparative analysis.
• Reduce environmental impacts by including energy storage systems and sourcing batteries from low impact electricity grid mix locations.
• Establishing takeback and recycling programs to reduce overall system environmental impacts.

• PV microgrids with battery backups can bridge the energy gap and improve the quality of life in off-grid communities.

LIMITATIONS
While this analysis provides an in depth exploration into the environmental impacts of various scenarios for different microgrids, there were some limitations associated with the modeled impacts. The study didn’t model:
• The socioeconomic considerations of microgrids (i.e. life cycle costing)
• Varying battery chemistries (e.g. lead acid batteries)
• The impacts from the inevitable increase in electricity demand

BACKGROUND
Currently over 1.3 billion people (18% of the global population) lack access to an electrical grid (Figure 1). Without access, communities rely on potentially impactful alternative energy sources such as diesel generators, kerosene or biomass combustion. If communities can gain access to electricity, they receive significant benefits in terms of human health, economic development and overall quality of life. This highlights the environmental and health advantages of microgrid systems. Increased electrification will lead to significant environmental improvements.

OBJECTIVES
1. Evaluate the comparative environmental impacts of three microgrid systems:
 a. PV-Battery
 b. PV-Diesel
 c. PV-Hybrid
2. Evaluate the overall microgrid impacts from different:
 a. PV-Technologies
 b. Sourcing locations
 c. End of life scenarios

SIGNIFICANCE
This analysis aids in expanding electricity access by providing microgrid developers with improved information regarding the environmental impacts of PV microgrids. Increased electrification will lead to the achievement of significant global development outcomes such as reduced mortality, local economic development, improved quality of life, and significant environmental improvements. This study also advances life cycle research as it is only the second life cycle assessment of an entire microgrid system. Assessing a complete microgrid, rather than just individual components, better informs implementation decisions. This research also serves as a first step toward improving the overall impact of microgrids by identifying impact hotspots and opportunities for improvement of environmental sustainability.
RESULTS

1. **Impacts of Electrification Options**

The PV-Battery system had the lowest climate change impacts per kWh of electricity production. Compared to small home diesel generators, PV microgrids save 31-92% in climate change impacts. Compared to extending the central electricity grid in Kenya, the PV-Battery and PV-Diesel systems had substantially lower climate change impact per kWh of electricity production (81% and 54% respectively), while the PV-Diesel system has higher impacts per kWh.

![Systems with battery backups have the lowest GHG impact.](image)

2. **Climate Change Impact by Component**

Looking closer at the PV-Battery system, 72% of the total climate change impacts came from the lithium-ion battery with the majority of those impacts coming from the manufacturing of the battery cell. In total, 50% of the total battery impact and 30% of the total microgrid impact comes from the electricity used in the manufacturing of the battery cell. This in mind, location of manufacturing substantially influences overall climate change impact. For example, shifting the battery production from the baseline European grid mix to a Chinese grid mix increases the total microgrid climate change impact by over 35%, whereas shifting from a generalized European grid to the grid in France or Switzerland decreases overall impact 18-27%.

3. **Impact Savings from Recycling**

The PV-Battery and PV-Hybrid systems saw impact savings from recycling on the order of 7.68%-depending on the category largely because of the avoided burden of primary material use. The PV-Diesel system had much smaller savings because the majority of its impacts stemmed from the burning of diesel rather than the use of metals. Adding recycling at the end of life enhances the PV-Battery benefits and minimizes its potential tradeoffs compared to other microgrid systems, home diesel gensets, and traditional electrification.

![Battery sourcing is critical to reduce GHG impacts.](image)

BASELINE PARAMETERS

- Daily demand per household: 1.55 kWh/day
- Household size: 5.7 ppl
- Village Population: 100
- Geographic location: Kenya (1°10’ S, 36°48’ E)
- Monthly average DNI: 5.93 kWh/m²/day
- System lifetime: 25 years
- PV technology: Thin Film Cadmium Telluride
- End of Life: Landfill

MICROGRID COMPONENTS

PV - BATTERY SYSTEM

This system contains a PV array with a battery backup which is sized to meet complete daily demand. Other system components include a charge controller, AC/DC inverter, wiring, electricity meters, and fencing.

PV - DIESEL SYSTEM

The system substitutes a genset system instead of a battery backup and charge controller. The PV array is sized to meet 33% of the daily demand, while the remaining demand is met by the genset. This production allocation optimizes generator efficiency.

PV - HYBRID SYSTEM

The hybrid system includes both a battery backup and a genset. Sizing and operation is based on the annual percent of No-Sun days. The difference between the daily demand and PV electricity produced is met by the genset.