GLOBAL WOOD SUPPLY
IDENTIFYING LIKELY WOOD SOURCING REGIONS THROUGH SPATIAL ANALYSIS

I. An Information Problem
Forests provide countless services, including harboring biodiversity, helping to regulate the Earth’s climate, and providing the commodity inputs for wood products.

Companies that produce wood products and other stakeholders have become increasingly aware of the threat of deforestation and additional social and environmental issues associated with wood sourcing.

The global, complex nature of wood product supply chains results in a lack of traceability. The subsequent lack of supply chain knowledge can inhibit companies from understanding the risks or benefits associated with their product sourcing.

II. The Client’s Approach
The client of this project, The Sustainability Consortium, is a membership organization committed to advancing product sustainability. To this end, it has developed a Commodity Mapping Program to inform stakeholders on product source impacts.

The Commodity Mapping Program utilizes trade and procurement data to model general supply flows and supports this information with geographic risk layers on relevant impacts.

III. Project Significance
This project provides the spatial analysis needed to apply the Commodity Mapping Program to wood product supply chains.

While trade data and basic sourcing knowledge can point to the country of origin of a product’s commodity inputs, this project identifies likely sourcing regions at the fine scale needed to highlight and address impacts that vary sub-nationally.

Procurement data or regional analysis might pinpoint a company’s supply source, but the global scope of this project is needed to understand the benefits and risks from sourcing in a particular region relative to other regions.

IV. Methods to Characterize Global Canopy Change
The Hansen et al. (2013) global tree cover dataset was used for both the fire and tree farm analysis. Burned area was categorized as canopy loss within one kilometer of a fire point, as was indicated by overlapping the Hansen Loss War and MODIS Fire datasets. The tree farm analysis involved aggregating and overlapping the Hansen Loss and Gain datasets to demonstrate where areas of trees were cut and regrown at faster than natural rates. Observations of tree farms in Google Earth imagery provided the basis for a binary dataset that was used to show a significant relationship between tree cover gain and tree farm presumption.

V. Resulting Base Maps and Analysis

Starting Point
The broadest category for identifying wood sourcing regions is locations with tree cover. All areas containing tree cover are potential sourcing regions for wood products. However, in order for a tree to enter a supply chain, it must first be cut. Accordingly, examining areas of high tree cover loss provides a baseline for identifying wood sourcing regions.

Loss Associated With Fire
Some tree loss is likely to enter supply chains than others. Tree loss associated with forest fire is not an intentional clearing. The wood that burns in such events is not accordingly inputted into supply chains at the same rate as other loss events.

Tree Farms
Tree loss that is associated with tree farms is very likely to enter supply chains. This wood is grown specifically for its economic and consumer benefit.

VI. Comparative Analysis
WRI Global Fire Watch recently published a dataset that shows tree plantations in a select number of tropical countries (Petrusson et al., 2016; WRI GFWM). By focusing on several countries, this dataset retains a high level of precision and therefore serves as a solid baseline to judge the accuracy of this project’s global tree farm model. A comparative analysis demonstrates a strong correlation between the two datasets, both of which effectively identify tree farms in South America.

When all areas of tree loss are included, the correlation (between tree farm prevalence shown in our model [A] and tree farm prevalence predicted by WRI [B]) is around 0.58. However, when only areas experiencing greater than 25% tree cover loss are included, the correlation is nearly 0.85. Overall, a comparison with an alternate dataset verifies the predictive power of our logistic model in areas with high tree cover loss.

VII. Conclusions
This project demonstrates that layering canopy cover loss and gain data can predict with consistency the likelihood of a given area of canopy cover corresponding with a tree farm. Due to the commercial nature of tree farms, the canopy changes identified and characterized using our methodology are likely to result in commercial forest products. By subtracting the likely plantation areas and forest lost to fire from total forest loss, the methodology developed in this project also reasonably predicts where wood is sourced from non-plantation sources. This analysis represents an initial step that contributes to a larger global forest product model. Ultimately, the base maps developed in this report will enable inter-regional analysis of wood product supply chains to predict the relative impacts of specific sourcing regions and products.

References

Acknowledgements
We would like to express our gratitude to the following collaborators for their enthusiasm and hard work that made this project possible.

The Sustainability Consortium, particularly Philip Curtis and Christine Clay; Jon Narod, Andy Hood, and John Jehle; Jared Mesnil; and the Forestry Analytics team at the University of California, Santa Barbara.

www.bren.ucsb.edu/~pulpfiction
pulpfiction@lists.bren.ucsb.edu

Amanda Chao, Mitchell Maier, Michael Millstein, Julia Paltseva
Faculty Advisor: Dr. Lee Hannah
Client: Philip Curtis