UNIVERSITY OF CALIFORNIA
Santa Barbara

Development of an Integrated Ground-Air-based Conservation Monitoring System for the Tejon Ranch Conservancy

A Group Project submitted in partial satisfaction of the requirements for the degree of
Master of Environmental Science and Management
for the
Bren School of Environmental Science & Management

by

CHERYL BUBE
ELLIE CAMPBELL
AMANDA KELLEY
KALLI KILMER
JONATHAN PHAM

Committee in charge:
JAMES FREW

JUNE 2018
Development of an Integrated Ground-Air-based Conservation Monitoring System for the Tejon Ranch Conservancy

As authors of this Group Project report, we are proud to archive this report on the Bren School's website such that the results of our research are available for all to read. Our signatures on the document signify our joint responsibility to fulfill the archiving standards set by the Bren School of Environmental Science & Management.

____________________________________________
Cheryl Bube

____________________________________________
Ellie Campbell

____________________________________________
Amanda Kelley

____________________________________________
Kalli Kilmer

____________________________________________
Jonathan Pham

The mission of the Bren School of Environmental Science & Management is to produce professionals with unrivaled training in environmental science and management who will devote their unique skills to the diagnosis, assessment, mitigation, prevention, and remedy of the environmental problems of today and the future. A guiding principal of the School is that the analysis of environmental problems requires quantitative training in more than on discipline and an awareness of the physical, biological, social, political, and economic consequences that arise from scientific or technological decisions.

The Group Project is required of all students in the Master's of Environmental Science and Management (MESM) Program. It is a three-quarter activity in which small groups of students conduct focused, interdisciplinary research on the scientific, management, and policy dimensions of a specific environmental issue. This Final Group Project Report is authored by MESM students and has been reviewed and approved by:

____________________________________________
James Frew PhD., Faculty Advisor
March 2018
Acknowledgements

We would like to extend our sincerest gratitude towards the following individuals and organizations for their guidance and support throughout the duration of this project:

James Frew, PhD – Faculty Advisor, UCSB Bren School of Environmental Science and Management
Laura Pavlisak, MS – Client & Stewardship Manager, Tejon Ranch Conservancy
Michael White, PhD - Founding Science Director, Tejon Ranch Conservancy
Ben Teton - Biologist, Tejon Ranch Conservancy
Ashley Larson, PhD – UCSB Bren School of Environmental Science and Management
David Theobald, PhD – Colorado State University School of Global Environmental Sustainability
Mark Dufau – Director of Sales: Commercial, AeroVironment, Inc.
Todd White – Director of Flight Operations, RoboHawk Aerial Video & Imaging
Tom Dudley, PhD – Principal Investigator, Riparian Invasion Research Laboratory (RIVRLab), Marine Science Institute, UCSB
Nicole Norelli – Coordinator, California Alliance for Tamarisk Biocontrol, RIVRLab
Susan Mazer, PhD – Director, California Phenology Project

With additional thanks to:
Andrew Brooks PhD – Director, Carpinteria Salt Marsh, UC Natural Reserve System
Kyle Cavenough PhD – Assistant Professor, Geography, UCLA
Pranav Maroli – UCSB
Alexander Mikhailovsky, PhD - UCSB
Eduardo Romero – Marine Science Institute, UCSB
Arthur Sylvester PhD – Faculty Emeritus, UCSB
Sharad Shankar, PhD Candidate – UCSB
# Table of Contents

Signature Page ................................................................. ii
Acknowledgements ............................................................ iv
List of Tables ................................................................... vii
List of Figures ................................................................... vii
Appendix Items ................................................................... viii
Glossary ........................................................................... ix
Abstract ........................................................................... 1
Executive Summary ............................................................ 2

1. Introduction
   1. The Tejon Ranch Conservancy ......................................... 6
   2. Project Significance ........................................................... 8
   3. Project Objectives ............................................................ 8

2. Background
   1. Vegetation & Ecosystem Management by Tejon Ranch Conservancy
      i. Top-Priority Invasive Species at Tejon .......................... 9
      ii. Tamarisk Biology and Management ............................... 10
      iii. Current Management Strategies for Invasive Plant Species ... 10
   2. Integrating Distribution Models and Monitoring for Exotic Plant Management
      i. The MaxEnt Model ...................................................... 10
      ii. Modeling Plant Species Distribution with MaxEnt ........... 10
   3. Satellite Imagery for Environmental Monitoring
      i. Vegetation Mapping for Conservation Planning and Management .... 11
      ii. Detection of Tamarisk Presence and Defoliation from Satellite and Aerial Imagery ............................................. 11
      iii. Limitations of Satellite Imagery .................................... 12
   4. Unmanned Aerial Systems (UAS) for Environmental Monitoring
      i. UASs for Environmental Monitoring ............................. 12
      ii. Unmanned Aerial Vehicle (UAV) Design ......................... 13
      iii. Federal Regulation of Commercial Drone Use .................. 13
   5. Image Processing for Satellite and UAS Imagery
      i. Image Processing for Classification of Vegetation ............ 14
      ii. Object Based Image Analysis and Texture ..................... 14
      iii. UAS Image Processing ............................................. 15
      iv. Limitations and Hurdles to UAS Analysis for Monitoring .... 15
3. Methodology
   1. Flights and Ground Truthing
      i. Ground Truthing ........................................... 16
      ii. RoboHawk Flight .......................................... 17
      iii. Aerovironment Flight .................................. 18
   2. Image Processing
      i. Pixel-based Maximum Likelihood Classification ................. 19
      ii. Object-based Discriminant Analysis Classification ............. 22
   3. MaxEnt ............................................................ 24
   4. Cost Benefit Analysis .......................................... 25

4. Results
   1. Flights and Ground Truthing ..................................... 27
   2. Image Processing
      i. Pixel-based Maximum Likelihood Classification .................... 28
      ii. Object-based Discriminant Analysis Classification ............... 30
   3. MaxEnt ............................................................ 34
   4. Cost Benefit Analysis .......................................... 35

5. Discussion and Conclusion
   1. Flights and Ground Truthing ..................................... 36
   2. Image Processing ................................................ 37
   3. MaxEnt ............................................................ 38
   4. Cost Benefit Analysis .......................................... 39

6. Recommendation ....................................................... 40

Appendices ................................................................. 42

Literature Cited .......................................................... 66
List of Tables

**Table 1.** The number of presence samples used to train the classification model to identify and discriminate between different invasive weed species.

**Table 2.** A description of the two drone integration options evaluated for the Conservancy.

**Table 3.** Explanation of benefit-cost ratio (BCR).

List of Figures

**Figure 1.** Map of Tejon Ranch boundaries and four ecoregions.
**Figure 2.** Map of Panofsky Field training areas.
**Figure 3.** RoboHawk’s DJI Phantom 4 Advanced.
**Figure 4.** AeroVironment’s Quantix drone.
**Figure 5.** Images of Panofsky Field captured by the DJI Phantom 4 Advanced and by AeroVironment’s Quantix.
**Figure 6.** Zoomed image of five input raster layers for texture feature derivations.
**Figure 7.** Mosaicked image of Panofsky Field taken by RoboHawk’s DJI Phantom 4 Advanced quadcopter.
**Figure 8.** Mosaicked image of Panofsky Field taken by AeroVironment’s Quantix fixed wing.
**Figure 9.** Results of the pixel-based maximum likelihood image classification.
**Figure 10.** A closer look at the resulting classifications at Panofsky Field.
**Figure 11.** Segmentation layer of the full region of interest in the northeast section of Panofsky Field, including a close-up of the segmented polygons.
**Figure 12.** Four of the texture features used in the classification, including NDVI entropy, band 1 GLCM difference entropy, band 1 GLCM cShade, and band 2 GLCM homogeneity 1.
**Figure 13.** The discriminant analysis scatterplots generated from one tree of heaven analysis.
**Figure 14.** Map output from the discriminant analysis of tree of heaven.
**Figure 15.** Probabilistic distribution of tamarisk at the Tejon Ranch Conservancy.
**Figure 16.** Recommended framework for incorporating drone technology into ecological monitoring at Tejon Ranch.
Appendix Items

Appendix 1. Current UAV systems and specifications.
Appendix 2. Publically accessible databases available online that house different types of spectral and spatial data.
Appendix 3. NDVI cell grouping layer: ArcGIS ModelBuilder workflow.
Appendix 4. NDVI layer to NIR: ArcGIS ModelBuilder workflow.
Appendix 5. Images and descriptions of the plants chosen for classification training data.
Appendix 6. Twenty-five texture features calculated for each of the five grey-level bands.
Appendix 7. Details on the R “radiomics” package and R-ArcGIS bridge.
Appendix 8. R scripts for texture feature calculation and analysis.
Appendix 9. Texture analysis workflow.
Appendix 10. Inputs into the cost benefit analysis.
Appendix 11. Discriminant analysis model summary.
Appendix 12. Further applications of UAS technology.
Appendix 13. Further examples of imaging methods.
Appendix 14. List of satellite and aerial imagery sources and specifications.
Appendix 15. Traceability matrix.
Glossary of Terms

AGL (Altitude Above Ground Level): the height (in feet) above ground which a UAV flies over a land area locally.

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer): a premier instrument in the realm of Earth Remote Sensing, AVIRIS is a unique optical sensor that delivers calibrated images of the upwelling spectral radiance.

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer): an instrument sensor resulting from a partnership between US and Japanese space programs, it sits aboard the Terra multinational satellite.

CASI-II (Compact Airborne Spectrographic Imager 2): a high spatial and spectral resolution remote sensing sensor that can produce digital geoded imagery for map registrations, GIS integration, and generates multiple value-added information products from the same set of image data.

Drone: colloquial name for UAVs/UASs, the term is used in this project in reference to relatively small (<5 pounds), personal drones.

EO-1 Hyperion: a high-resolution hyperspectral imager, a USGS instrument

FAA (Federal Aviation Administration): a U.S. Department of Transportation Agency with the authority to regulate and oversee all aspects of American civil aviation.

Fixed Wing UAV: a drone model that has the appearance of an airplane, with rotors positioned on the wing tips.

Gimbal: an attachment used to add a camera to a drone. The function is to keep the camera stable for clear images.

Ground Truthing: used by remote sensing analysts to ensure that their image analysis is accurate; the process of going into the field to the actual places shown in the images to confirm that what they think they see on the image is actually true. This can be done before or after image collection.

KML (Keyhole Markup Language): a common file format for expressing geographic annotation and visualization within Internet-based, two-dimensional maps and three-dimensional Earth browsers.

Landsat (Land Remote-Sensing Satellite System): a joint NASA/USGS program, the Landsat series of satellites provides the longest temporal record of moderate resolution multispectral data of the Earth’s surface on a global basis. “TM” refers to Thematic Mapper, one of the sensors aboard the satellites.

LOS (Line of Sight, or Visual Line of Sight): ability of pilots to see their drone during flight with the naked eye.

MaxEnt: a program for modeling species distributions from presence-only species records.
NDVI (Normalized Difference Vegetation Index): a graphical indicator that can be used to analyze remote sensing measurements to assess whether the target being observed contains live green vegetation or not.

NLCD (National Land Cover Dataset (2011)): the most recent national land cover product created by the Multi-Resolution Land Characteristics (MRLC) Consortium.

No Fly Zone: areas where flying a drone is restricted by government regulations. Areas where a drone could interfere with an airplane or record sensitive information make up most of these areas.

Part 107: Required in the US when operating a drone for commercial purposes. Refers to CFR Part 107 of the Federal Aviation Regulations for non-hobbyist unmanned aircraft operations, which covers a broad spectrum of commercial uses for drones weighing less than 55 pounds.

Payload: refers to anything extra that a drone is carrying (ex. an attached camera and gimbal). Also, refers to the amount of additional weight a drone is able to lift in addition to its own weight and batteries (ex. may include the combined weight of a drone plus the camera and gimbal attached to the drone).

Quadcopter: the most popular name for Small UAVs, which has 4 rotors positions on a horizontal plane like a helicopter.

Remote Sensing: the scanning of the earth by sensors on satellites or high-flying aircraft in order to obtain information about it.

Resolution: refers to spatial resolution, which describes how clearly detail can be seen in a picture. Measure in distance units per pixel (ex. inch/pixel, cm/pixel, or m/pixel).

Sensor: a device that records a remote sensing image, similar to a camera.

sUAS: small unmanned aircraft system

UAS (Unmanned Aircraft System): an all-encompassing term for everything that makes a drone/UAV operate (ground control station with pilot, communications, support equipment, etc.)

UAV (Unmanned Aerial Vehicle): an aircraft without a human pilot onboard – instead, the UAV is controlled from an operator on the ground. It is sometimes called a drone.
Abstract

The Tejon Ranch Conservancy helps manage over 100,000 acres of conservation easements located in Southern California at the intersection of four major ecological zones. The Conservancy’s ability to monitor these easements is constrained by their small staff and limited budget. One of these monitoring targets is tamarisk, an invasive weed. Tamarisk infestations dramatically alter local landscapes, threatening native plants and animals, making it a management priority for the Conservancy. We explored how the Conservancy could use imagery from drones and satellites to expand their monitoring reach, using tamarisk as a proof of concept. We assessed the usefulness of drone and satellite imagery to identify invasive plant species to more effectively mobilize the Conservancy’s limited weed management resources. We reviewed the capabilities of these technologies, completed a series of drone test flights over the property, developed image classification models to identify different weed species in ArcGIS, and identified areas susceptible to tamarisk invasion using the MaxEnt species distribution model. The results of these analyses were synthesized into an iterative monitoring framework. A cost benefit analysis of investment options in drone technology revealed that it is practical and effective for the Conservancy to purchase and operate a drone for monitoring purposes.
Executive Summary

The Tejon Ranch Conservancy is the management body for over 100,000 acres of conservation easements owned by the Tejon Ranch Company. The Conservancy aims to develop stewardship practices to maintain and restore the ecosystems that cover the Ranch, and expand understanding of the Ranch’s unique and extraordinary natural resources. Tejon Ranch contains a diverse range of plants and animals due to its unique location at the convergence of four major ecological regions (Sierra Nevada, Mojave Desert, Great Central Valley, and Southwestern California), and is a critical wildlife corridor for several listed endangered species.

The Conservancy is responsible for monitoring expansive swaths of land, but its management resources are limited. Our research assesses if and how the addition of predictive modeling and high-resolution landscape mapping using unmanned aerial vehicles (UAVs or drones) and/or remote sensing would help the Conservancy make better use of its limited resources. We provide a cost-benefit analysis of these new technologies as compared to a baseline of the Conservancy’s traditional management practices. One of the Conservancy’s priorities is the management of invasive plant species. Our project focuses on weed management, the riparian weed Tamarisk (*Tamarix spp.*) in particular, as a proof of concept for enhancing conservation activities using an air-ground-based monitoring system.

We completed an initial literature review to assess the usefulness and cost effectiveness of different remote sensing and UAV technologies. We began with satellite imagery and tabulated different sources of satellite imagery with information about their temporal, spatial, and spectral resolution, operational lifetime, spatial accuracy, online community and support, and access. We systematically matched imagery sources to particular conservation questions or objectives, which we achieved through the creation of a Traceability Matrix. The Matrix matches conservation questions to useful or necessary sources of imagery, contingent on the specifications of each question. Regarding invasive plant species, a number of studies indicate Landsat data can successfully detect established tamarisk at larger spatial scales and in conjunction with spatial subsetting techniques. However, resolution of satellite sources is not fine enough for early-stage detection.

Because early-stage detection is critical to weed mitigation, we moved on to consider UAV or “drone” imagery, as it provides resolution on a much finer scale. Because Tejon Ranch is such a massive property, and using drones to attempt to image the entire Ranch would be an unwieldy process, we also considered it necessary to strategically identify land parcels that
would be good candidates for drone flights. To do this, we used MaxEnt, a species distribution model, to determine potential areas of invasive plant species occurrence at the Tejon Ranch Conservancy. MaxEnt uses presence data and environmental variables to predict species occurrence across a landscape. Presence data for plant species was sourced from the 2016 Incidental Weed Encounter Data provided by the TRC staff. We used tamarisk presence data in conjunction with nine environmental layers in MaxEnt 3.3.3. Our results show that Tamarisk probability of occurrence is highest along major streams (Fig. 15). Predictions of Tamarisk occurrence were fairly accurate with an area under the curve (AUC) of 0.989. Major streams had the largest contribution followed by soil type. All other variables had low (<5%) contribution. The areas identified by MaxEnt are those most susceptible to invasion, and are therefore priority site for drone flights to ensure rapid mitigation. One of those sites was Caliente Creek, where we identified a 40-acre field site called Panofsky to conduct test flights.

To determine if UAV imagery could be used to identify targeted locations of invasive weeds to the species level, ground truthing was conducted at the 40-acre Panofsky Field site prior to UAV flights. We performed a preliminary ground truth survey to identify and geotag common invasive and native plant species present throughout the Panofsky parcel. Before each drone flight, we placed cardboard arrow signs next to the target plants to assist with later locating the training areas in the drone imagery. After the geo-referenced stitched maps were created from the UAV imagery, we matched the ground truth data to the individual plant targets in the imagery.

Drone flights were performed on two separate flight days about one month apart at Panofsky Field. The first flight was conducted by RoboHawk Aerial Video & Photography on September 11, 2017, and the second by AeroVironment on October 12, 2017. RoboHawk Aerial Video & Photography was able to map Panofsky Field at multiple elevations (120 and 200 feet AGL) using a DJI Phantom 4 Advanced. Flight durations ranged from 40 minutes for the 120-foot AGL flight, to 1.5 hours for the 200-foot AGL flight to map Panofsky with three and four battery swaps, respectively. Over 1000 individual still images were captured from the Phantom 4 flights and stitched into a mosaic map. AeroVironment used their precision agriculture drone platform, the Quantix, to map Panofsky Field in less than 10 minutes at an altitude of 360 feet AGL and generate preview mosaics in the field.

After the imagery was acquired, we attempted two methods of image classification to automate the identification of plant species: pixel-based maximum likelihood classification, and object-based discriminant analysis. For the pixel-based classification, a composite 4-band image (NIR+RGB) was generated from the drone imagery for use as input into a supervised classification. Using the ArcGIS Maximum Likelihood Classification tool, defined training
samples were selected from ground truthed plant patches to serve as confirmed positive matches. Based on the spectral properties within the defined patches, the tool classified individual pixels to one of four classes (tamarisk, short pod mustard, tree of heaven, and a general oaks class). With a conservative reject fraction of 0.25, the software was successfully able to identify individual oaks and short pod mustard patches, but was generous in its over classification of tamarisk and tree of heaven throughout all regions of the parcel.

For the object-based classification, we used an R statistical package called radiomics and ArcGIS ModelBuilder to develop a method to calculate 25 different texture features within the drone imagery. Imagery from both drone test flights was used, with 1 cm resolution RGB imagery from the first and 5 cm resolution NIR from the second. Discriminant analysis, a statistical technique for identifying patterns characterizing classes, was used to classify the image from the derived texture features. In test the methods capabilities in distinguishing invasive tree of heaven in the test imagery, we found that this method was unable to distinguish tree of heaven with our limited groundtruth dataset to a useful level of accuracy. The model had a low percentage of false negatives, as only 9 of 60 presence points were classified by the model as “absence” points. However, the classification of tree of heaven had a training error of 0.15 and with 51 true positive and 26 false positives, and the model’s precision was 66.2%. Despite the mixed results of our analyses, it is clear that the implementation of drone technologies can drastically increase data collection abilities but can be optimized for specific applications such as habitat monitoring and surveying.

Finally, A cost benefit analysis was completed to evaluate two potential management options that incorporate drone technology into the Conservancy’s monitoring strategies: (1) the Conservancy purchases a drone and all related accessories and permitting or (2) the Conservancy contracts a drone service to conduct monitoring flights over the property. Information about the costs for each option was collected and simulated over a five-year period. We chose this short period in recognition of the rapid evolution of drone technology, as the cost of commercially available drones and drone-related services will decrease over time. The benefits of drone technology were quantified in terms of time savings, hinging on the assumptions that drone technology would maintain the same accuracy as a field survey in identifying invasive plants. Using information about how much time the Conservancy spends on weed monitoring, it was determined that implementing drones would yield discounted time savings of $16,524.64 over five years. For option 1, this translated into a benefit-cost ratio of 1.15, with the overall costs for the five years amounting to about $14,325. Option 2 yielded dramatically different results, as costs for contracting a drone service to replicate our trial flight once a month over five years amounted to over $100,000. This resulted in a benefit-cost ratio of 0.15. Option 1 is thusly far more favorable than option
2, but is only slightly more favorable than the status quo of current monitoring strategies. However, this CBA was limited to the benefits of using drones for monitoring weeds, so it is reasonable to assume that if benefits were expanded to include all Conservancy activities, the overall benefits of a drone purchase would only increase while costs remain relatively static.

Our research confirmed that drones, if properly utilized, can be a useful tool to expand the monitoring reach of the Tejon Ranch Conservancy. However, Tejon Ranch is too large and variable in terrain to monitor in its entirety, multiple times per year, as would be desirable to detect invasive plant presence. Therefore, the Conservancy must be able to prioritize specific areas to target for drone surveys. Through our MaxEnt model, the Conservancy can identify highly susceptible areas to conduct flights. The presence data that would be gathered from these flights could then be used as inputs into new iterations of the MaxEnt workflow to more accurately predict future invasive plant dispersal risk. This creates a positive feedback loop in which the workflow is continually updated with environmental data and new presence data, and the overall monitoring framework becomes more robust and efficient. The Conservancy could also adapt this monitoring framework to include other conservation interests such as conifer mortality and endangered species monitoring. We believe that this framework may have potential applications for similarly resource-constrained organizations like the Conservancy, facilitating conservation activities despite financial limitations.

1. Introduction
1.1 Tejon Ranch Conservancy

The Tejon Ranch is the largest private landholding in California. At over 270,000 acres, this property, located near Lebec, California, is owned by the Tejon Ranch Company. In 2008, the Tejon Ranch Conservancy was established as the management body for 109,000 acres of conservation easements belonging to the Tejon Ranch Company (RWMP, 2013). This partnership between corporate and nonprofit entities has helped facilitate research, stewardship, and public access in conserved lands since its inception (RWMP, 2013). Conservancy-monitored lands consist of approximately 240,000 acres of varied landscapes including desert, steppe grasslands, mountainous conifer stands, and oak galleries. The Conservancy aims to develop stewardship practices to maintain and restore these Ranch ecosystems, and expand understanding of the Ranch’s unique and extraordinary natural resources (RWMP, 2013). Tejon Ranch is of conservation interest due to its unique location at the convergence of four major ecological regions (Sierra Nevada, Mojave Desert, Great Central Valley, and Southwestern California) containing a diverse range of plants and animals (Figure 1). The Ranch is a critical wildlife corridor between the many protected lands in the area, from the Sierra Nevada to the Los Padres National Forest (RWMP, 2013). It supports habitats for several species listed under the Endangered Species Act including the California Condor and Bakersfield cactus (US Fish & Wildlife Service, 2017).

The Conservancy is responsible for monitoring expansive swaths of land, but in recent years has found itself low on resources with which to look after its properties. Our research assesses if and how the addition of predictive modeling and high-resolution landscape mapping using unmanned aerial vehicles (referred to hereafter as UAVs or drones) and/or remote sensing would help the Conservancy make better use of its limited resources. We provide a cost-benefit analysis of these new technologies as compared to a baseline of the Conservancy’s traditional management practices outlined in the Ranch Wide Management Plan (RWMP). The RWMP is a blueprint for the Conservancy’s management actions, with one priority being the management of invasive plant species. Our project focuses on weed management as a proof of concept for enhancing conservation activities using an air-ground-based monitoring system.
Figure 1. A map of the four ecoregions that overlap within the bounds of Tejon Ranch. The Ranch boundaries are delineated in white.
1.2 Project Objectives
The purpose of this project is to:
- Review current methods for air-ground-based monitoring. Determine what can be measured using drones, and what resources are required to analyze drone data. Compare the effectiveness of existing methods using open access spatial data such as Landsat and AVIRIS.
- Determine how these technologies can be used at the Tejon Ranch Conservancy to identify species and regions of interest, using the invasive weed tamarisk as a case study.
- Develop an integrated air-ground-based monitoring framework for the Tejon Ranch Conservancy based on the costs and benefits of drone and remote sensing technologies.

1.3 Significance of the Project
These objectives support the Conservancy’s efforts to better understand Tejon Ranch’s rapidly changing ecosystem dynamics and more effectively steward the land in response to growing threats such as invasive plant species and climate change. An exploration in the modeling of plant distributions and its role in ecosystem monitoring can prove to be fruitful when managing reserves with limited field staff. On a large property with the scale of Tejon Ranch, early detection of invasive plant spread enables early mitigation. While the Conservancy complies with best management practices in regards to species-specific plant disposal, rapid detection can be achieved through the integration of monitoring and modeling technology. Our plan seeks to establish a framework for the union of such technologies in a conservation context that is both applicable for landscapes beyond Tejon Ranch and accessible for resource-constrained managers like the Conservancy.
2. Background

2.1 Vegetation & Ecosystem Management by Tejon Ranch Conservancy

Top-Priority Invasive Species on Tejon
Several invasive plant species are of particular concern to the Conservancy, including Sahara mustard, shortpod mustard, tree tobacco, yellow starthistle, and tamarisk (also known as saltcedar, Tamarix ramosissima, and Tamarix parviflora). According to the United States Department of Agriculture, invasive species are “plants, animals, or pathogens that are non-native (or alien) to the ecosystem under consideration and whose introduction causes or is likely to cause harm” (USDA, 2018). Invasive weed monitoring is critical to the goals of the Conservancy. The proliferation of invasive plants such as tamarisk can drain creeks and springs as it outcompetes native willows and cottonwoods in terms of water acquisition (Gaskin, 2003). Tamarisk typically grows in saline soils and can tolerate a maximum of 15,000 ppm of soluble salt. It is also capable of increasing soil salinity and can tolerate alkaline soil types, evident by the salt secretions that often encrust its leaves. Other negative impacts of tamarisk include increasing the frequency and intensity of fires (Busch, 1995; Busch and Smith, 1995; Ellis et al., 1998) due to the plant’s vegetation structure and floods due to channel-narrowing (Blackburn et al., 1982).

Tamarisk Biology and Management
Tamarisk grows as an evergreen, deciduous shrub or small tree (Evangelista, 2009). Phenologically, these plants have slender branches, small scale-like leaves of grey-green, and bark that progresses from reddish brown and smooth when young, to bluish-purple with furrows and ridges when older (Dirr, 1997). When flowering, it can be easily identified by its dense masses of characteristic small, pink flowers, aiding in its dispersal as an invasive plant species that is present at several locations on Tejon Ranch.

Tamarisk eradication methods often include manual stem cutting paired with direct application of herbicide to the stump. Our research group was able to participate in bio-control efforts on the ranch led by UCSB’s RIVR (Riparian InVasion Research) lab using tamarisk beetles (Diorhabda carinulata). This invasive plant as well as other invasive plant species such as yellow starthistle thrives in such disturbed habitats. Yellow starthistle (Centaurea solstitialis) is highly vectorized via roads (AMNH). It is an aggressive invader that can rapidly convert landscapes into monocultures by outcompeting most other vegetation
including native plant species. Late in the season, it turns from green to dry skeletons of yellow starthistle. In effect, this can exacerbate the buildup of dry vegetative fuel load and create fuel for late-summer wildfires (DiTomaso et al., 2006).

**Current Management Strategies for Invasive Plant Species**

Currently, invasive plant species, such as tamarisk, Sahara mustard, shortpod mustard, tree tobacco and others, are identified and located on the Ranch using time-intensive, infrequent, or costly methods including incidental on-the-ground observations, helicopter aerial surveys, or contracted botanist plant surveys. The Conservancy complies with best management practices in regards to species-specific plant disposal.

**2.2 Integrating Distribution Models and Detailed Monitoring for Exotic Plant Management**

*The MaxEnt Model*

MaxEnt is a software model that uses presence-only data and environmental variables to produce an estimated species distribution in a defined area (Merow et al., 2013), by creating a distribution of maximum entropy using a set of constraints including climate, topography, and vegetation (Hoffman et al., 2008). A study compared MaxEnt to 16 other species distribution models and concluded that MaxEnt was most accurate (Hoffman et al., 2008). To increase the accuracy of MaxEnt, more presence data can be included in the model. Models with at least 400 presence data points have been shown to have the most accurate results, but in some instances models with 100 presence data points have performed comparatively (Phillips et al., 2004).

*Modeling Plant Species Distribution with MaxEnt*

There are well over 1000 published studies that have used MaxEnt to predictively model species distribution (Merow et al., 2013), one of which used MaxEnt to predict the distribution of five invasive species including tamarisk along the North Platte River in Nebraska (Hoffman et al., 2008). The environmental variables used by Hoffman et al. included WorldClim climate data, elevation, slope, aspect, vegetation, soil type, and distance from roads, streams, and other human impacts. Hoffman et al. concluded that MaxEnt accurately predicted the distribution of four out of the five species and speculated that the fifth species was not predicted correctly because of sampling error.
2.3. Satellite Imagery for Environmental Monitoring

Vegetation Mapping for Conservation Planning and Management

Technological progress in image resolution and sensor development has greatly improved the ability to distinguish canopy structure, and physiology and phenology of vegetation from remotely sensed imagery. Vegetation mapping via image processing techniques applied to remotely sensed imagery is a rapidly evolving field with many high-potential applications for conservation planning and management (Ustin & Gamon, 2010; Müllerová et al., 2013; Joshi et al., 2004; Xie et al., 2008; Hestir et al., 2008; Ustin et al., 2004). Satellite imagery has been used to detect stress and mortality in coniferous forests (Bright et al., 2013; Eitel, 2011; Meddens et al., 2013; Ferrell et al., 1993; Hicke & Logan, 2009; Ortiz et al., 2013), map vegetation at landscape scales (Roth et al., 2015; Rogan et al., 2002; Dye et al., 2016; Xie et al., 2008; Van de Ven & Weiss, 2001; Dabrowska-Zielinska et al., 2014), and aid in detection of invasive plants (Sankey et al., 2014; Hestir et al., 2008; He et al., 2011; Narumalani et al., 2009; Lawes & Wallace, 2008; Ghulam et al., 2013; Skowronek et al., 2017).

Detection of Tamarisk from Satellite and Aerial Imagery

The detection and mapping of two tamarisk species of high concern to the Tejon Ranch Conservancy, Tamarix ramosissima and T. parviflora, have been extensively studied (West et al., 2016; Meng et al., 2012; Evangelista et al., 2009; Hamada et al., 2007; Everitt et al., 1990). Detection algorithms can use single-date imagery or time series, as well as additional environmental data/variables. Everitt and Deloach recommend that single-date aerial assessments of large infestations of tamarisk be done in the late fall or early winter and in mid-January for smaller populations after foliage changes color but before it drops (Everitt & Deloach, 1990). West and her team used eight months of Landsat imagery as inputs to five species distribution models to detect tamarisk distributions based on phenological differences from nearby vegetation (West et al., 2016). They recommend topography, climate, and soil layers be included when predicting suitable habitat but that a limited number of these environmental and climate layers be used when modeling current distribution (West et al., 2016).

Landsat TM data has been used to effectively monitor tamarisk defoliation, though other types of disturbance or defoliation in the area can distort the signal (Meng et al., 2013; Hurley, 2004). Many studies will subset the area prior to using detection algorithms to help reduce these false positive errors. For example, one study used the National Land Cover Dataset
(NLCD) class 90 (woody wetland) to subset a study area likely to contain tamarisk, and then applied a disturbance index to detected defoliation (Meng et al., 2013).

**Limitations of Satellite Imagery in Environmental Monitoring Applications**
While its usefulness is illustrated by these studies, there are still significant limitations to using satellite imagery for environmental management. (1) Available and/or affordable imagery may not be of high enough spatial, temporal, and/or spectral resolution to resolve certain targets, especially in the presence of confounding environmental variables; (2) designing and calibrating methods to extract specific information may require a high level of expertise in remote sensing methodology and/or ecology of target species; (3) depending on methods and imagery used, large-scale monitoring may be very computationally intensive, and (4) the methods must be robust to slight variations in resolution and calibration of sensors to be reusable over time.

The results from our literature review of satellite detection applications for the Conservancy are condensed into a Traceability Matrix (apx. 15) that matches conservation questions to useful or necessary sources of imagery, contingent on the specifications required to analyze imagery with accuracy.

**2.4 Unmanned Aerial Systems Imagery for Environmental Monitoring**

**UASs for Environmental Monitoring**
For decades, governments have been developing UAS technology (Unmanned Aerial Systems or drones), typically for military specific uses such as intelligence gathering. Now, private UAS manufacturers are providing consumers with smaller, ready-to-fly drones at commercially affordable prices (<$1000), with low operating costs, and the added benefit of increased flight flexibility to immediately capture rapidly changing ecological processes or patterns (DJ2I; Yuneec; Rango et al., 2009). These remotely operated platforms can be outfitted with imaging sensors capable of collecting high-resolution imagery in thermal and near infrared wavelengths as well as the visible range of the electromagnetic spectrum (Michez et al., 2016; Gonzalez et al., 2016). In this report we refer to UAVs, UASs, and drones interchangeably.

Environmental monitoring through the use of drones can avoid common remote sensing issues such as cloud cover, and allow researchers or managers to identify vegetation species more confidently (Anderson and Gaston, 2013; Dehaan et al., 2012). Personal drones allow for more flexible timing of flights and thus can provide more valuable time-scale survey data than satellite data, which may not be as useful without significant, time-consuming image
processing. This can be critically important to monitoring and managing invasive plant surges in response to precipitation or disturbance events (Davies and Sheley, 2007).

Drones have demonstrated high potential for conservation applications in a variety of fields, including thermally identifying Koala nests in Queensland, Australia (Gonzalez et al., 2016), assessing habitat vegetation cover types and habitat quality for the Sage Grouse in Idaho (Breckenridge et al., 2011), estimating South Korean coniferous tree coverage area (Ivosevic et al., 2017), and discriminating invasive thistle plants from surrounding vegetative cover in Greece (Tamouridou et al., 2017). This technology can also be useful for easement compliance monitoring because users can pre-program geographically confined flight paths to map parcel areas or boundaries.

**Unmanned Aerial Vehicle (UAV) Design**

Drone design can generally be divided into two categories: (1) Multi-Rotor and (2) Fixed Wing configurations. Multi-rotor designs are typically less expensive and, unlike fixed winged designs, they can halt forward flight, hover, and rotate the camera to focus on or follow specific targets. Multi-rotor drones like the DJI Phantom 4 benefit from vertical take-off and landing and come with obstacle avoidance, which is useful in non-open environments. Fixed winged platforms fly in the same manner as traditional airplanes with fixed imaging cameras in the plane’s “belly” facing towards ground targets. This format can cover more land area per flight when compared to multi-rotor platforms, but imagery can be subject to motion blur if the sensor is not sufficiently stabilized or synchronized to the flight speed (Breckenridge et al., 2011). Some fixed wing platforms need a second operator to launch the drone. Depending on the design, landing either requires an open area for a controlled crash or the drone can be caught by a second operator. Another drone model is the hybrid fixed wing platform, which has vertical takeoff and landing features and transitions into horizontal flight once it reaches a certain height above ground level. See **Appendix 1** for a comparison table of current consumer drone platforms.

**Federal Regulation of Commercial Drone Use**

In 2016, the Federal Aviation Administration (FAA) in collaboration with the Department of Transportation (DOT) published Part 107 of the FAA Regulations, which specifies the certifications required for legal and safe commercial UAS operation. A Part 107 permit is required for any individual who is using a drone for non-recreational purposes, such as crop monitoring, research, bridge inspections, rescue operations, or wildlife nesting area evaluations (FAA, Part 107). Permits can be obtained by passing an aeronautical knowledge test at an FAA-approved testing center. Drones may be flown only in the daytime, at a
maximum altitude of 400 feet above ground level, while always remaining within visual line of sight of the operator without optic aids (FAA, Part 107). The visual line of site requirement is a major limiting factor when surveying large parcels of land but is expected to be relaxed to permit optical aids in future revisions of UAS regulations. Other restrictions include maintaining distance from airports and avoiding high wind conditions. These regulations are in place to ensure safe operation of small aircraft platforms because they often share airspace with larger aircraft.

2.5 Image Processing for Satellite and UAS Imagery

Image Processing for Classification of Vegetation
The multistep process of obtaining useful information from remotely sensed imagery includes (1) imagery selection, (2) preprocessing, and (3) classification (Xie et al., 2008). Image selection is based on spectral, spatial, and temporal resolution, which determine what information can be extracted from the imagery (Appx. 2). Depending on the imagery selected, preprocessing may consist of mosaicking or “stitching” multiple images, radiometric or atmospheric corrections, subsetting data to remove bad spectral bands or images with cloud cover, or dimension reduction like Principle Component Analysis or Minimum Noise Fraction.

Image classification algorithms are either object-based or pixel-based. Pixel-based algorithms can be further categorized into either supervised or unsupervised classifications. Supervised classifications include maximum likelihood, random tree, and support vector machine in ArcGIS, and minimum distance and spectral angle mapper in ENVI, and require representative ground truth data points as training sites. Iso-Cluster in ArcGIS is an unsupervised classification algorithm, which statistically forms a specified number of unique classes without training sites. Pixel-based classification differentiates between categories or types of things in an image by statistically grouping pixels together based on their relative magnitudes in spectral bands (specific ranges of the electromagnetic spectrum measured by the sensor; e.g. a red band might sense wavelengths between 650 and 750 nanometers).

Object-Based Image Analysis and Texture
Object-based methods delineate objects in an image by grouping neighboring pixels with similar spectral characteristics (Schiewe, 2002; Ryherd & Woodcock, 1996). As spatial resolution has increased, objects of interest can be resolved in more detail, so object-based image analysis has emerged as a way to extract additional useful information. This is especially true of UAV-acquired data as it can have spatial resolution on the order of centimeters (Blaschke, 2010; Laliberte & Rango, 2008; Feng et al., 2015). Furthermore, high
spatial resolution can increase spectral within-field variability, which can diminish accuracy of pixel-based classifiers, making object-based analysis a particularly effective strategy for UAV-acquired imagery (Schiewe, 2002).

Texture features – spatial patterns in an image, with properties like coarseness, contrast, directionality, line-likeness, and regularity – have been considered as a way to compensate for the lower spectral resolution (most UAV sensors have only a few spectral bands) of UAV imagery (Ryherd & Woodcock, 1996; Laliberte & Rango, 2008). For example, texture features increased classification accuracy of invasive *Fallopia japonica* – a species with characteristic texture, but usually occurring in small patches and with high degree of intermingling with other plants – when mapped with low-cost RGB+NIR orthophotos (Dorigo et al., 2012). Additional studies were limited to a few broader vegetation groups, though they also find texture is a valuable addition, especially mean, standard deviation, and entropy features (Laliberte & Rango, 2008; Feng et al., 2015; Szantoi et al., 2013). Object-based image analysis has also been used for semi-automatic detection of dead trees following bark beetle outbreaks, with methods able to detect dead trees at a finer scale than visual interpretation, even within smaller, isolated stands (Heurich et al., 2010).

**UAS Image Processing**

UAS survey flights collect hundreds of geo-referenced still images that must be stitched into a larger mosaic image to fully represent the surveyed area. With a capable computer and access to software such as Agisoft’s PhotoScan or Pix4DMapper, conservationists and researchers can produce georeferenced mosaic maps suitable for management decisions (Pix4D) (Agisoft). However, this procedure is computationally demanding, to the extent that some UAS investigations may choose to outsource their image processing. Software platforms and services now exist that can help automate UAS survey flights and offer licenses for unlimited image mosaicking and geo-referencing in exchange for membership fees (DroneDeploy).

**Limitations and Hurdles to UAS Image Analysis for Monitoring**

Post-survey image analysis must be performed for imagery to be useful to conservation managers on a landscape scale. Fully utilizing the potential of UAS in their environmental monitoring protocol will require investment by the Tejon Ranch Conservancy in staff training for drone operation, but also software licenses and computing resources. Once these initial hurdles are cleared, UAS habitat surveys and image analysis can become the foundation for a replicable protocol that will provide robust time-scaled data.
3. Methods

3.1 Flights & Ground Truthing

Ground Truthing the Panofsky Field Site
To determine if UAV imagery could be used to identify targeted locations of invasive weeds to the species level, ground truthing was conducted at the Panofsky Field site prior to UAV flights. Panofsky Field is an approximately 40-acre field site located adjacent to the northern border of the Tejon Ranch property. A preliminary ground truth survey was performed to identify and geotag invasive and native plant species present throughout the Panofsky parcel using an Avenza Map (an iOS app) with approximately 5-10 m accuracy. Each target plant was then marked with an identification-numbered orange marker flag.

We chose our targets based on common species and invasive species of interest present at the site. Our goal was to identify individual plant species at various stages of phenology to create thorough representative libraries. We intentionally looked for and geotagged a wide representation of plant species of interest, in a diverse representation of different habitats within the site (i.e. creekbed, creek bank, grasslands, roadsides, vernal pools, wetland areas, etc.). Descriptive notes were also taken to assist with plant identification during image processing. Once identified, we collected additional defining characteristics such as diameter, percent greenness, flower presence and color, seed presence and relative abundance, proximity to other plants, and other identifying descriptors. A total of 67 individual plants were tagged and geo-referenced at Panofsky Field.

Before the flight, we replaced the marker flags with cardboard arrow signs next to the target plants to assist with locating the training areas in the drone imagery. Each sign was made from 10” x 18” light brown cardboard with a large, bold arrow painted in black matte spray-paint to minimize sunlight reflection in the UAV imagery. This signage method was based on a similar method from a 2017 study by Lu and He. To classify species in a heterogeneous grassland, Lu and He used unified white foam boards labeled with plot ID codes, which were affixed to the ground near each study plot to be visible in UAV-acquired imagery. After the geo-referenced stitched maps were created from the UAV imagery, we matched the ground truth data to the targets in the imagery (Figure 2). This process is described in section 3.2.
Figure 2. Panofsky Field training areas. Map (left side of figure) of tamarisk training areas (red dots) at the Panofsky Field UAV test flight site. Inset map (right side of figure) indicates with a star the location of Panofsky Field along the northern border of the Tejon Ranch Conservancy.

RoboHawk Flight
RoboHawk Aerial Video and Photography, a UAV consulting company, performed multiple surveys of Panofsky Field at varying altitudes using a DJI Phantom 4 UAV on September 11, 2017 (Figure 3). The Phantom 4 system is a commercially available quadcopter platform with vertical takeoff and omni-directional flight features. Two main flights were conducted: the first at 200’ above ground level and the second at 120’ above ground level (AGL). The first flight covered the entire plot (~40 acres) in approximately 39 minutes (9:30-10:09am) requiring one battery swap (two total batteries for entire flight). The second flight covered the entire plot in a total of 1 hour and 36 minutes (10:09-11:45 am) and required 3 battery swaps (4 total batteries for entire flight). Time-of-day is important to consider in order to minimize the influence of shadows and consistency for time-scale comparisons.
The drone’s automated flight path was generated in the iOS application DroneDeploy from a KML file outlining the Panofsky Field parcel boundaries. Based on the boundaries of the area to be surveyed, the application will generate an overlapping “lawnmower” flight pattern to obtain the highest quality mosaic possible. The flights were programmed to have a front and side overlap of 75% using a 12-megapixel RGB (red, green, blue bands) camera. To offset the heavy computational demands of image mosaicking, all RoboHawk-collected imagery was uploaded to DroneDeploy’s cloud service that processed and generated geo-referenced orthomosaic maps at resolutions of 5 cm/pixel (at 200’ AGL) and 1 cm/pixel (at 120’ AGL) from the 1000+ original JPEG images. Orthomosaics are composite images made of many individual still photos that also correct for distortion attributed to factors such as the earth’s surface and camera lens distortion.

**AeroVironment Flight**

AeroVironment, Inc. (AV) used their new agriculture-specific platform, Quantix, to map Panofsky Field. AV is targeting Quantix at commercial agriculture usage with integrated sensors collecting 18 megapixel RGB and Near-Infrared data to inform vegetation health assays. The Quantix system is a unique fixed wing, forward flying design that can also takeoff and land vertically like a quadcopter system (Figure 4). The AV survey flight took place at Panofsky Field on Oct 12, 2017 and covered the entire plot in 9 minutes (10:24-10:33am) at a fixed altitude of 360’ AGL. AV’s Decision Support System’s (DSS) software allows users to pre-program flight paths like DroneDeploy, but also allows users to obtain field-processed preview mosaics for preliminary analysis. DSS is similar to DroneDeploy in that flight paths are typically “lawnmower” patterns. The flight was programmed to have a side overlap of 70-75% while flying at a fixed altitude of 360’ AGL to optimize image quality from the fixed aperture sensors. Processed outputs from this flight were georeferenced orthomosaics at resolutions of 2.5 cm/pixel.
3.2 Image Processing

We used two methods of image processing in attempts to discriminate tamarisk from other plant species of interest in the imagery acquired by the drone flights (Figure 5). Both methods are types of supervised classifications, as described in the background section. The first method described below is a pixel-based maximum likelihood classification, and the second is an object (i.e., polygon) based discriminant analysis classification. We chose to explore these two methods specifically because the computing tools that are required to complete them are easily accessible to the Conservancy, and can potentially be replicated by Conservancy staff should they choose to employ this technology.

Figure 5. LEFT: The image of Panofsky Field captured by the DJI Phantom 4 Advanced; RIGHT: The same site captured by AeroVironment’s Quantix.
Classification: Pixel-based Maximum Likelihood Classification

Normalized Difference Vegetation Index (NDVI) is an indicator of vegetative health, based off reflectance of visible and near-infrared light. Living plants containing photosynthetically active chlorophyll absorb more visible light in the red and blue wavelengths, which contributes to their common green appearance. NDVI can provide the Conservancy with the ability to quantitatively monitor the efficacy of their biocontrol management efforts through seasonal flights measuring tamarisk dieback. Understanding that different plant species can have different amounts of relative chlorophyll at a given time, the differential absorbance from the varying plant species was used to inform our supervised classification.

Quantix output maps provided Red band data and NDVI data, but NIR bands are required to establish unique spectral signatures for each defined plant class. Thus, the NIR band must be recovered algebraically, by the process detailed in the following section.

NDVI Cell Grouping Layer Methods
In order to reduce the processing load on our computing systems and software, our methodology will only analyze NDVI data in contiguous clusters large enough to be representative of a complete plant approximately 0.5m² (200 pixels) in size. Using ArcGIS’s Reclassify, Region Group, and Raster to Polygon tools, we generated a mask that would exclude any NDVI values outside the appropriate size and grouping thresholds. (See Appendix 3 for the ArcGIS ModelBuilder workflow.)

Once the masked NDVI layer was generated, raster values were normalized so that values range from -1 to 1 using the following raster calculation formula:

$$Normalized\ Value = (Input\ NDVI/127.5) - 1$$

Once normalized, NIR signatures were calculated from a reconfiguration of the original NDVI formula:

$$NDVI = \frac{(NIR - Red)}{(NIR + Red)}$$

$$NIR = \frac{(Red) \times (1 + NDVI)}{(1 - NDVI)}$$

The NIR band was stacked with the RGB imagery to create a 4-band raster image, which serves as the input data of the supervised classification procedure.
**NDVI Layer to NIR for Classification Input**

NDVI alone can help identify areas with photosynthetically active (or live) vegetation, but NIR data can help distinguish plant species that differ in their reflectance. Using the recovered NIR data, unique spectral signatures of the various plant species can be used as training input data for our classification. (See Appendix 4 for the ArcGIS ModelBuilder workflow.)

**Generation of Invasive Plant Training Data for Supervised Classification**

To perform supervised classifications in ArcGIS, confirmed presence training data must be generated in order to discriminate distinct plant classes with respect to spectral and textural uniqueness. Using the Classification toolbar in ArcGIS, we drew training polygons over confirmed plant targets whose georeferenced locations were identified during ground truthing trips or via visual comparison to confirmed ground truthed examples. We drew the training samples conservatively, staying well within the spatial extent of each plant to reduce false positives in our classification results. The plants we selected for classification were tamarisk, shortpod mustard, tree of heaven, and tree tobacco. (See Appendix 5 for photos and descriptions of the plants chosen for training data.)

**Supervised Classification**

Once the NIR data was recovered from the red and NDVI data, it was composited with the 3-band RGB imagery data to make a 4-band image (NIR+RGB). Using the ArcGIS Maximum Likelihood Classification tool, four defined classes of plants were differentiated from training samples (Table 1). Reject fractions were conservatively set to 0.25, meaning cells were only classified to one of the four defined groups if there was at least a 25% level of confidence. This was purposefully set to favor overclassification of vegetation over omitting detection of potential weeds.

---

**Table 1.** The number of presence sample used to train the classification model to identify and discriminate between different invasive weed species.

<table>
<thead>
<tr>
<th>Species</th>
<th># of Positive Samples (Present)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamarisk</td>
<td>10</td>
</tr>
<tr>
<td>Shortpod Mustard</td>
<td>10</td>
</tr>
<tr>
<td>Tree of Heaven</td>
<td>3</td>
</tr>
<tr>
<td>Oaks</td>
<td>3</td>
</tr>
</tbody>
</table>
Classification: Object-based Discriminant Analysis

Image Pre-Processing
Image pre-processing consisted of using GDAL to reproject the two sets of drone imagery into NAD-83 UTM zone 11N (the Conservancy’s preferred projection), and clipping them to the same spatial extent. The spatial subset was chosen so all imagery overlapped within the region and all ground truth data fell within the boundary. Single-band rasters were extracted from the RoboHawk Phantom 4 three-band imagery. We resampled NDVI imagery from the AeroVironment Quantix drone to match the spatial resolution of the RoboHawk Phantom 4 imagery. We created a fifth grey-level raster comprised of an adjusted difference between the green and red bands of the RoboHawk Phantom 4 imagery. The green-red difference was adjusted so all values were positive, as required by the texture algorithm. This fifth grey-level raster was included since valuable information about vegetation is present not only in the relative magnitudes of red and green reflectance values, but also in the differential between them. These five single-band rasters were input to the texture feature calculations (Figure 6).

![Figure 6. Zoom of five input raster layers for texture feature derivations. Top row from left to right: original image, red, green. Bottom row from left to right: blue, green minus red, NDVI.](image)

Segmentation for Object Based Analysis
A segmented polygon layer described regions over which to calculate grey-level texture features within the drone imagery. We created this layer using ArcGIS’s Segment Mean Shift tool, which generates a raster with pixels grouped by with adjacent pixels with similar spectral characteristics, creating “segments” of relative spectral homogeneity. We converted these
regions to a polygon feature layer with unique polygon identification numbers, as the texture feature calculation requires a polygon input to outline regions of the grey-level raster over which to calculate texture features. The Mean Shift tool has four parameters: a minimum number of pixels to be included in a segmented region, the bands to use in determining the segmentation, and spatial and spectral detail parameters. The minimum number of pixels was chosen to be 8000 (approximately nine square feet.) The model was run with many different combinations of spectral and spatial detail, with the best combinations identified by inspection. Spectral detail was set to 17 and spatial detail to 16 to obtain the segmented layer that was used in the final analysis. These two parameters indicate the level of importance given to spectral differences and proximity between features in the imagery, respectively. Smaller values result in more smoothing while larger values result in more detail.

**Texture Feature Calculation**
Grey level co-occurrence matrices record how often specific pixel values occur adjacent to each other. Texture features are statistical quantifications of spatial patterns of raw pixel values and the grey-level co-occurrence matrices. We calculated twenty-five texture features for each of the five grey-level bands discussed in the previous section (Appendix 6). These features are the same as those in the R “radiomics” package, and were calculated in ArcGIS via the R-ArcGIS Bridge (Appendix 7). We joined the resulting texture feature values to the original segment polygons in ArcGIS to allow visual evaluation of the results (see Appendix 8 for R scripts and Appendix 9 for complete texture analysis workflow).

**Discriminant Analysis for Tree of Heaven & Tamarisk**
We conducted a discriminant analysis based on Gaussian finite mixture modeling using the MclustDA function of the “mclust” package in R. Discriminant analysis tests whether certain combinations of features can resolve species into distinct groups, or differentiate them sufficiently to create a probability-based classification. We selected this method because ground truth data inputs are a set of discrete, known groups. The R package was used so that z-scores, which indicate level of certainty for a given prediction, could be visualized.

We tested multiple combinations of texture features in multiple discriminant analysis model runs, selected based on visual inspection, suggestions from the literature, and physical principles vegetation structure and light reflectance. The clustvarsel function from the R package “clustvarsel” was also used to find different possible combinations of features to test. The clustvarsel functions aid in identifying locally optimal subsets of variables with group/cluster information. The discriminant analysis scatter plots were inspected and
estimated models were run on the entire segmented polygon dataset to assess the predictive capacities of the methodology.

3.3 MaxEnt
MaxEnt, a species distribution model, was used to determine potential areas of invasive plant species occurrence at Tejon Ranch. We chose MaxEnt because it has been shown to perform more accurately compared to other predictive models (Hoffman et al., 2008). MaxEnt uses presence data and environmental variables to predict species occurrence across a landscape. Presence data for plant species was sourced from the 2016 Incidental Weed Encounter Data provided by the Conservancy staff. These data points were collected incidentally as the Conservancy staff encountered invasive plant species while performing various other monitoring tasks, and are therefore not a comprehensive data set. Because we were limited by data (most species consisted of around 30 data points), we focused our modeling efforts on tamarisk because it had the largest data set (297 locations).

We used tamarisk presence data in conjunction with nine environmental layers in MaxEnt version 3.3.3. These layers included slope, aspect, distance from major streams, distance from utilities, distance from cattle corrals, climate water deficit, maximum temperature, precipitation, and soil classification, all with a spatial resolution of 30 m. Slope and aspect were derived from a 26 m digital elevation model using ArcGIS’s Slope and Aspect tools. The Euclidean Distance tool was used to calculate the distance from corrals, distance from major streams and distance from utilities. Major streams (classified as having water year-round), corrals, and the utility layer were provided by the Conservancy. Climate water deficit, maximum temperature, and precipitation were acquired from the California Basin Characterization Model (CA-BCM 2014), which uses monthly averages from 7CMIP-3 GCM+SRES models from 1981-2010 to compute averages at 270 m resolution (2014 California BCM). The soil classification layer was acquired from State Soil Geographic (STATSGO2) and was classified by soil order: alfisols, andisols, aridisols, entisols, histosols, inceptisols, mollisols, ultisols, and vertisols. A minimum convex polygon was created around the tamarisk presence data using the minimum bounding geometry tool in ArcGIS and was used as the bias file.

MaxEnt was run using the following parameters: 5000 maximum iterations, 0.00001 convergence threshold, 0 adjust sample radius, 25 random test percentage, 1 regularization multiplier, 10000 maximum number of background points, 15 replicates, and subsample replicated type.
3.4 Cost Benefit Analysis

Deploying drone technologies can be expensive; thus, we deemed it prudent to conduct a cost-benefit analysis (CBA) on two monitoring options that incorporate drones as a means of improving the effectiveness of tamarisk management (Table 2).

<table>
<thead>
<tr>
<th>Option 1</th>
<th>Purchasing a drone and completing all flights, maintenance, and image acquisition in-house</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 2</td>
<td>Contracting a drone service to complete flights and all related image acquisition activities</td>
</tr>
</tbody>
</table>

Option 1 consists of purchasing a commercially available drone, a variety of associated accessories, an NIR sensor unit, undergoing the necessary training and permitting, and subscribing to an image pre-processing (stitching and geolocating) service. Option 2 consists of contracting a drone consulting firm to conduct flights and deliver pre-processed imagery to the Conservancy. This analysis is limited to only the acquisition and image stitching process, and excludes any classification endeavors that the Conservancy may choose to pursue. The metric used in this analysis was the Benefit-Cost Ratio (BCR), interpreted as shown in Table 3 below.

<table>
<thead>
<tr>
<th>BCR Value</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The baseline of status quo weed monitoring activities conducted by the Conservancy</td>
</tr>
<tr>
<td>&gt; 1</td>
<td>Indicates that the activity is more beneficial than the status quo</td>
</tr>
<tr>
<td>&lt; 1</td>
<td>Indicates that the activity is more costly than the status quo</td>
</tr>
</tbody>
</table>

Costs and benefits for this analysis were accrued over a five-year period. This relatively short period was chosen due to the rapidly improving nature of drone and sensor manufacturing technology. We assume that cheaper, more efficient drone models will be available for commercial use within the next decade, so the time frame in which this CBA is relevant is inherently limited. We completed the CBA under the critical assumption that plant identification after image acquisition is as accurate as status quo monitoring activities.
Costs

The costs associated with Option 1 include the purchase of a commercial drone and accessories, NIR sensor, subscription to an image stitching software service, FAA drone pilot certification and drone registration, and an insurance/repair policy package from the drone manufacturer (See Appendix 10 for an itemized list of costs).

In order to estimate the cost of contracting a drone service for Option 2, we asked RoboHawk Aerial Video & Imaging to provide us with a quote for the flight that they completed for us over Panofsky Field. Using this information, we extrapolated from the hourly rate quote we received from RoboHawk to estimate the annual cost of contracting a drone service to replace current weed monitoring activities, with drone flights occurring once a month. RoboHawk estimated 10 hours for one full flight session over an area the size of Panofsky field, end-to-end including image processing. We assume that after purchasing the equipment in Option 1, Conservancy staff would operate on this same 10-hour per month flight schedule.

Benefits

Benefits for both options were calculated in terms of time savings. We calculated the benefits of both options by comparing the decrease in staff man-hours in the field that is afforded due to drone implementation. Specifically, the reduction in hours from field surveying a site the size of Panofsky once per month, down to a 10-hour flight session (once per month). Benefits were made comparable between the two options by using survey information from Conservancy staff about the amount of time it would normally take to complete a systematic survey of Panofsky field on foot. Benefits were discounted at a rate of 7%, which is the convention for most non-profit financial analyses (Ligane 2004).
4. Results

4.1 Flights

RoboHawk and AeroVironment Flight and Mosaic Results

Both drone platforms rapidly collected still images for generating orthomosaics. The Phantom 4 used in the RoboHawk flight produced high quality maps in the DroneDeploy app at 5 cm/pixel (at 200’ AGL) and 1 cm/pixel (at 120’ AGL). The Phantom 4 captured imagery at the highest resolution of 1 cm/pixel because its hover capabilities reduce motion blur and allow for stable image capture. The Quantix captured imagery at 2.5 cm/pixel (at 360’ AGL). True color output maps were created for both Phantom 4 (Figure 7) and Quantix flights (Figure 8).

Of the image mosaicking solutions, we found DroneDeploy to be the better option due to the quality of the stitched mosaics (lack of blur, smearing, or loss of data). Image mosaicking with AeroVironment’s Decision Support System (DSS) yielded mostly positive results. It was able to perform a quick stitch in the field and also cloud-based generation of the final mosaic map. AV’s DSS had difficulty cleanly stitching senesced plants, which lack the significant leaf canopy structure that provides a proper stitching reference. Areas with adjacent or overlapping plants were sometimes observed to have smeared into undefinable vegetative regions.

Figure 7. The mosaicked image of Panofsky Field taken by RoboHawk’s DJI Phantom 4 Advanced quadcopter.
4.2 Image Processing

Pixel-Based Maximum Likelihood Classification Results

Ground truthed plant presence data provided reference locations for generating training sample data. At each ground reference location, species were identified and confirmed so that they provide example “search images” for Conservancy staff to match with non-referenced plants in the mosaic imagery. The results from the maximum likelihood classifier tool were displayed as color-coded plant class estimations across Panofsky Field (Figures 9 & 10).

The classification yielded mixed results. Tamarisk was overestimated in dry areas near the railroad in the northeastern region of the parcel, where we have confirmed no presence of tamarisk. However, the classification accurately identified isolated individuals in the dried creekbed. Oak trees and cottonwoods were incorrectly classified as tamarisk in densely covered areas in the northwest end of the parcel. There were considerable false positive

Figure 8. The mosaicked image of Panofsky Field taken by AeroVironment’s Quantix fixed wing.

Sources: RGB True Color Imagery and NDVI layers were collected by AeroVironment using the Quantix drone platform. Flights were performed on October 12, 2017 from 10:24am-10:33am. Wind conditions were <10mph.
assignments to the tree of heaven class, with training data sourced from only from three defined samples. Oaks were more successfully identified throughout the maps, with stand alone oaks were more accurately classified than clustered trees. The classification tool was most successful in identifying shortpod mustard. Most mustards were found northeast of the creek with sufficient spacing to distinguish individual plants.

Figure 9. Results of the pixel-based maximum likelihood image classification. The plants identified by the program are noted in the legend above.
Figure 10. A closer look at the resulting classifications at Panofsky Field. Tree of Heaven is displayed in red, Shortpod Mustard in yellow, oaks in blue, and Tamarisk in green. This close-up view demonstrates the misclassification that resulted from our analyses, as there appears to be overlap of species identified on the same plant.

Object-based Discriminant Analysis Classification Results

Segmentation & Texture Features
The final segmentation scale is finer than individual trees but occasionally larger than smaller individual plants (Figure 11). It is not especially sensitive to different sizes of plants; the segmentation is more sensitive to homogeneous patches than individual plants, though in some cases these are the same thing. The approximately 20-acre region of interest was segmented into 42,077 polygons.
Figure 11. LEFT: segmentation layer of the full region of interest in the northeast section of Panofsky Field; RIGHT: A close-up of the segmented polygons layer overlaid on top the DJI Phantom 4 imagery.
The texture in some cases helps distinguish between different general classes of land cover, but do not clearly distinguish different species of interest from this imagery (Figure 12).

Figure 12. Four of the texture features used in the classification. Clockwise from top left are: NDVI entropy (first order), band 1 GLCM difference entropy, band 1 GLCM cShade, and band 2 GLCM homogeneity 1. In the second and third images, a residual linear streaking effect from the flight pattern and image stitching is apparent.
**Discriminant Analysis**

Discriminant analysis revealed that neither tree of heaven nor tamarisk could be classified algorithmically from texture features using 1cm resolution 4-band imagery taken in mid-September, to a useful degree of accuracy. The discriminant analysis scatterplots show that presence and absence points overlap almost completely, and that calculated centroids are not sufficiently far apart for the species to be accurately classified algorithmically in the imagery. The most accurate classification of tree of heaven had a training error of 0.15 (Figures 13 & 14). With 51 true positive and 26 false positives, the model’s precision was 66.2% (Appendix 11). However, the model had a low percentage of false negatives, as only 9 of 60 presence points were classified by the model as “absence” points.

*Figure 13.* The discriminant analysis scatterplots generated from one tree of heaven analysis, demonstrating the lack of precision of this type of analysis in this case.
Figure 14. The map output from the discriminant analysis of tree of heaven. Legend values correspond to confidence in tree of heaven presence, as determined by the discriminant analysis. Analysis was based on 133 confirmed absence and 60 confirmed presence points, and 13 texture features (Appendix 6).

4.3 MaxEnt

Our results show that tamarisk probability of occurrence is highest along major streams (Figure 15). Predictions of tamarisk occurrence were fairly accurate with an area under the curve (AUC) of 0.989. Major streams had the largest contribution followed by soil type. All other variables had low (<5%) contribution.
Figure 15. Probabilistic distribution of tamarisk at the Tejon Ranch Conservancy in California based on 297 presence locations and nine environmental factors. Red colors indicate an area with a high probability of tamarisk distribution and blue colors indicate an area with a low probability of tamarisk distribution.

4.4 Cost Benefit Analysis

The CBR of Option 1 (drone purchase) was calculated to be 1.15, while the CBR of Option 2 (drone service) was 0.15. Option 1 is clearly to be the more desirable of the two, and would return a net present value of $ 3,797.35 in benefits over the five-year period.
5. Discussion & Conclusion

5.1 Ground Truthing & Flights

Ground Truthing
For future UAVs flights at Tejon Ranch, establishing training areas before flying and collecting imagery can be useful to accurately identify and geographically locate plant species such as invasive weeds and conifers. When selecting training areas, the Conservancy should obtain a representative sample of plant species of interest in a wide variety of phenological stages present in the area during that flight season. The more descriptive information obtained about each training area plant, the more easily and accurately each individual plant can be identified from the aerial imagery.

In this study, training area black arrow signs with rectangular cardboard dimensions of 10” x 18” were sufficiently large enough to locate them in the high resolution (0.4 inch/pixel) Phantom 4 drone imagery flown at 120’ AGL. They were almost as well distinguishable in the 200’ AGL and 2-inch/pixel resolution imagery of the same drone. In the Quantix drone imagery, flown at 360’ AGL with imagery of 1 inch/pixel resolution, these training area signs were more challenging to identify. Therefore, the Conservancy may consider increasing the sign dimensions to approximately 14” x 22” when flying this drone to ensure that all training areas can be sufficiently located and identified in the imagery. Also, the training area signs for the Quantix drone imagery may be more discernable from barren soil by instead using red or yellow arrows with black borders and white cardboard backgrounds. Ultimately, materials and colors used to create these signs should minimize reflectance in the imagery by avoiding use of shiny materials.

A minimum of 30 training areas should be used, or more until representative libraries of the plant species of interest are obtained. For repeat flights over the same field site during different seasons, ground truthing should be repeated to account for differences in phenology of plant species (i.e. dropped leaves, changes in color, senescence, flowering, etc.).

Overall, for future UAV imaging flights at Tejon Ranch, ground truthing prior to flying is extremely useful, and in most cases necessary, to properly identify and locate individual plant species of interest such as invasive tamarisk.
**Flights and Image Mosaicking**

Details on characteristics associated with drone-specific design can be reviewed in Section 2.4 (UAV Design). Comparing a fixed wing platform (Quantix) against a quadcopter platform (Phantom) for capturing vegetation data, we found that the Phantom can collect data at higher spatial resolutions while the Quantix was able to collect data at higher spectral resolution with its NIR sensor. The Phantom had more flight flexibility in terms of altitude, and angle of image capture (for 3D modeling applications), and hovering to focus on a target of interest. The Quantix has fixed aperture sensors, which require a fixed altitude of 360’ AGL. Although we did not test the video capabilities of the Phantom, we are confident that this feature can also be used for qualitative assessments that do not require explicit quantitative spatial analysis. DSS’s difficulty in stitching senesced plants, and its smearing of adjacent plant outlines, are most likely due to its method of flight. Fixed wing designs can cover more area per flight relative to a quadcopter, but fixed wings must maintain constant forward motion, which can cause image distortion. This is not a major issue for AeroVironment as the Quantix was not designed to identify plants, but rather to assess the health of known crops.

### 5.2 Image Processing

**Pixel-Based Maximum Likelihood Classification**

AeroVironment’s Quantix provided sufficient spectral data to generate training samples for the classification. Tamarisk was over-classified in areas with confirmed absence. Additional training samples could potentially help with the differentiation of tamarisk from other plant species. Tree of heaven, tamarisk, and oaks were often classified together. Shortpod mustard was classified with the most success; its desiccated stage showed that attention to phenology in flight planning can help optimize the discrimination of specific target plant species. The quality of spectral data can be optimized if flights are planned for when the target plant species is most distinct from surrounding plants.

**Object-based Discriminant Analysis Classification**

The results of the discriminant analysis showed that neither tamarisk nor tree of heaven could be algorithmically classified from the imagery to a useful degree of accuracy. However, classification may still be feasible, as shown in other studies, if imagery is collected at carefully chosen times of the year and with sensors capable of much higher spectral resolution. Species-level classification is not feasible without a carefully designed strategy, which requires identifying times when the species is phenologically or physiologically distinct from
surrounding vegetation. New drone sensors with higher spectral resolution could make detection of invasive species feasible and affordable within the next decade, as such technologies already exist and rapid market expansion is generally causing prices of drone technology to decline due to the increased competition and continuous innovation. With additional presence/absence data on species of interest, it should be possible to start disentangling the optically distinct patterns and phenological schedule. To assess the full potential of classification by features analysis, more presence/absence data is needed.

5.3 MaxEnt

Our results show that distance from major streams was the most important variable for predicting tamarisk occurrence at the Conservancy. These results agree with a previous study that modeled tamarisk distributions using MaxEnt in Nebraska (Hoffman et al., 2008). Tamarisk occurrence was also associated with slopes close to zero (i.e., flatter areas). Tamarisk was also highly correlated with soil type; however, the spatial resolution of the soil layer was quite coarse. Higher resolution soil data might improve the accuracy of the model.

To further improve this model, more tamarisk presence locations are needed. Though there are 297 presence locations for tamarisk, most of them are congregated in two main areas. The Conservancy should collect more tamarisk presence locations points to better inform the model.

The MaxEnt output can be used to inform the Conservancy on where to fly drones to monitor for tamarisk. Note that if the Conservancy surveys an area MaxEnt indicated as having a high probability of tamarisk occurrence, but none is discovered, it does not mean the model is wrong, it could simply mean that tamarisk has not dispersed to that region. The only way to inform the model is to increase the amount of presence data. Moving forward, this same model can be used for other invasive plant species of interest at the Conservancy. However, Conservancy staff need presence locations from multiple areas on the Ranch to produce a MaxEnt output with high confidence.

5.4 Cost Benefit Analysis

While there is a significant difference between the BCRs of the two proposed options, the resulting benefits are modest. Option 1’s BCR is 1.15, which means that for every $1.00 of cost for the project, there is a $1.15 return, and the net present value of benefits for Option 1 was only $3,797.35 over five years ($19,440.00 before discounting). This may not be enough of a benefit to persuade the Conservancy to move forward with purchasing a drone.
However, our analysis is limited to only the benefits in terms of avoided future costs of tamarisk removal. Were this analysis expanded to include ecological benefits of other monitoring targets of interest to the Conservancy— including other invasive weed species and conifer mortality - the resulting BCR could be significantly higher. In addition, our estimates of potential costs for Option A were intentionally high in order to produce a conservative estimate. This intentional overestimation of costs and underestimation of benefits demonstrates that despite a high first year of invest cost, the benefits of this technology, when more accurately quantified, would only increase.
6. Recommendation

After an extensive literature review regarding the use of drones in conservation research, as well as a demonstration on a threatened landscape, we confirmed that drones, if properly utilized, can be a useful tool to expand monitoring reach. However, Tejon Ranch is simply too large and variable in terrain to monitor in its entirety, multiple times per year/as many times per year as would be necessary for detecting invasion of undesirable plant species. Therefore, the Conservancy must be able to prioritize specific areas to target with drone surveys. Our group recommends that drone flights be performed on threatened habitats discerned by our MaxEnt model, with current environmental input data. In addition to targeting key areas in mitigation efforts, presence data derived from inspection of drone imagery can be included in new iterations of the MaxEnt workflow to more accurately predict future invasive plant dispersal risk (Figure 16). As the workflow is cycled with continually updated environmental data and new presence data, the overall monitoring framework becomes more robust and efficient.

![Recommended framework for incorporating drone technology into ecological monitoring at Tejon Ranch.](image)

*Figure 16.* Recommended framework for incorporating drone technology into ecological monitoring at Tejon Ranch.
[This page intentionally left blank]
### APPENDIX 1. Current UAV systems and specifications.

<table>
<thead>
<tr>
<th>UAV Platform</th>
<th>Price</th>
<th>Design</th>
<th>Stock Sensor</th>
<th>Other Sensors</th>
<th>Flight Time</th>
<th>Approx Coverage Area</th>
<th>Control Range</th>
<th>Interface</th>
<th>Obstacle Avoidance</th>
<th>Georeferencing</th>
<th>Env. Constraints</th>
<th>Replacement Parts</th>
<th>Community</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJI Phantom 3</td>
<td>$500</td>
<td>Quadcopter</td>
<td>2.7K 12MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>25 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>1 km</td>
<td>Controller+Smartphone</td>
<td>N</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Phantom 3 Advanced</td>
<td>$799</td>
<td>Quadcopter</td>
<td>2.7K 12MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>23 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>5 km</td>
<td>Controller+Smartphone</td>
<td>N</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Phantom 3 Pro</td>
<td>$999</td>
<td>Quadcopter</td>
<td>4K 12 MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>23 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>5 km</td>
<td>Controller+Smartphone</td>
<td>N</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Phantom 4</td>
<td>$1,000</td>
<td>Quadcopter</td>
<td>4K 12.4MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>28 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>5 km</td>
<td>Controller+Smartphone</td>
<td>Y</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC, wind &lt;10m/s</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Phantom 4 Advanced</td>
<td>$1,199</td>
<td>Quadcopter</td>
<td>4K 20MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>30 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>7 km</td>
<td>Controller+Smartphone</td>
<td>Y</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Phantom 4 Pro</td>
<td>$1,500</td>
<td>Quadcopter</td>
<td>4K 20MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>30 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>7 km</td>
<td>Controller+Smartphone</td>
<td>Y</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Inspire 1 V2.0</td>
<td>$1,999</td>
<td>Quadcopter</td>
<td>4K 12MP</td>
<td>Requires specific adapters, Sequoia</td>
<td>18 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>5 km</td>
<td>Controller+Smartphone</td>
<td>N</td>
<td>GPS/GLONASS</td>
<td>-10-40 ºC, wind &lt;15m/s</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Inspire 2</td>
<td>$2,999</td>
<td>Quadcopter</td>
<td>4K</td>
<td>Requires specific adapters, Sequoia</td>
<td>27 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>7 km</td>
<td>Controller+Smartphone</td>
<td>Y</td>
<td>GPS/GLONASS</td>
<td>-20-40 ºC, wind &lt;15m/s</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>DJI Mavic</td>
<td>$999</td>
<td>Foldable Quadropter</td>
<td>4K</td>
<td>Requires specific adapters, Sequoia</td>
<td>27 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>7 km</td>
<td>Controller+Smartphone</td>
<td>Y</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>Sensefly eBee</td>
<td>$10,000</td>
<td>Fixed-Wing</td>
<td>Parrot Sequoia</td>
<td>Requires specific adapters</td>
<td>55 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>3 km</td>
<td>Laptop</td>
<td>N</td>
<td>GPS</td>
<td>wind &lt;12m/s</td>
<td>Y</td>
<td>Y</td>
<td>DJI GO Control App, No Image Processing</td>
</tr>
<tr>
<td>Parrot Disco Pro Ag</td>
<td>$4,499</td>
<td>Fixed-Wing</td>
<td>Parrot Sequoia</td>
<td>Requires specific adapters</td>
<td>30 min</td>
<td>500 acres at 120m AGL, 7400 at 2000m</td>
<td>2 km</td>
<td>Controller+Smartphone</td>
<td>N</td>
<td>GPS/GLONASS</td>
<td>0-40 ºC</td>
<td>N</td>
<td>Y</td>
<td>ARIMOV (powered by Pix4D)</td>
</tr>
<tr>
<td>Lehmann Aviation LAS00-AG</td>
<td>$7,990</td>
<td>Fixed-Wing</td>
<td>Parrot Sequoia</td>
<td>Requires specific adapters</td>
<td>35 min</td>
<td>240 acres at 1000m AGL</td>
<td>1 km</td>
<td>Laptop</td>
<td>N</td>
<td>GPS</td>
<td>wind &lt;10m/s</td>
<td>Y</td>
<td>N</td>
<td>OperationCenter v2, AgSoft and Pix4D optional</td>
</tr>
<tr>
<td>AeroVironment Quantix</td>
<td>$16,500</td>
<td>Fixed-Wing + 2 rotors</td>
<td>RGB, Multispectral</td>
<td>No</td>
<td>45 min</td>
<td>400 acres</td>
<td>Tablet</td>
<td>N</td>
<td>N</td>
<td>GPS</td>
<td>N</td>
<td>N</td>
<td>Quantix and AV Decisions Support System (AV DSS) and Pix4D optional</td>
<td></td>
</tr>
<tr>
<td>Birdseye Firefly6 Pro</td>
<td>$5,999</td>
<td>Fixed-Wing + 6 rotors</td>
<td>Variable, Thermal, Sequoia</td>
<td>Requires specific adapters, Thermal</td>
<td>45 min</td>
<td>500 acres</td>
<td>Tablet</td>
<td>N</td>
<td>N</td>
<td>GPS</td>
<td>Y</td>
<td>N</td>
<td>Produces imagery that can be fed into any post-processing solution</td>
<td></td>
</tr>
<tr>
<td>X-act 3 E384</td>
<td>$2599 + sensors</td>
<td>Fixed-Wing</td>
<td>Variable, Thermal, Sequoia, RedEdge, Thermal</td>
<td>Requires specific adapters, Sequoia, RedEdge, Thermal</td>
<td>90 min</td>
<td>1000 acres</td>
<td>5 km</td>
<td>Controller+Laptop</td>
<td>N</td>
<td>GPS</td>
<td>wind &lt;10m/s</td>
<td>Y</td>
<td>N</td>
<td>Pixhawk flight controller, optional post-processing software</td>
</tr>
<tr>
<td>O'qualia Captor</td>
<td>$5,990</td>
<td>Fixed-Wing</td>
<td>Sony WX500</td>
<td>Requires specific adapters, Sequoia, Sony RX100</td>
<td>50 min</td>
<td>350 acres at 152m AGL</td>
<td>Tablet</td>
<td>N</td>
<td>N</td>
<td>GPS</td>
<td>wind &lt;12.5m/s</td>
<td>Y</td>
<td>N</td>
<td>UgCS Mission Planning software</td>
</tr>
<tr>
<td>Sensors</td>
<td>Parrot Sequoia</td>
<td>Canon S110 Nir / Red Edge</td>
<td>FLIR Duo / Duo R</td>
<td>FLIR Vue</td>
<td>Micasense Rededge</td>
<td>Sentera Double 4K Ag</td>
<td>Sentera Single NDVI &amp; NDRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs</td>
<td>$3,500</td>
<td>$600-$1000</td>
<td>$999/$1299</td>
<td>$1499-$3199</td>
<td>$5,195</td>
<td>$2499-$4299</td>
<td>$1999-$2799</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Type</td>
<td>RGB, Multispectral</td>
<td>Converted NIR/RE</td>
<td>Thermal + HD visible</td>
<td>Thermal</td>
<td>RGB, Multispectral</td>
<td>4K HD RGB, Multispectral</td>
<td>Multispectral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertised Resolution</td>
<td>16MP RGB, 4x 1.2MP bands</td>
<td>12MP</td>
<td>Thermal (160x120), 2MP color, 1080p liveview</td>
<td>(384x256) or (640x512)</td>
<td>3.6MP RGB</td>
<td>12.3MP Stills, 4K Vid @ 30fps</td>
<td>1.2MP stills, 720p video</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatible UAVs</td>
<td>DJI, Parrot Disco, Sensfly eBee</td>
<td>Sensfly eBee, Event38, more</td>
<td>DJI, adapters available, similar to GoPro dimensions</td>
<td>DJI Inspire/M100 (larger sensor)</td>
<td>DJI, Sensfly eBee</td>
<td>DJI, Sentera Omni, Sentera Phoenix</td>
<td>DJI, Sentera Omni, Sentera Phoenix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Intention</td>
<td>Ag/Research</td>
<td>Converted Point + Shoot</td>
<td>Thermal Inspection/ Search + Rescue</td>
<td>Thermal Inspection / Search+Rescue</td>
<td>Ag/Research</td>
<td>Ag/Research</td>
<td>Ag/Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>135g</td>
<td>172g</td>
<td>84g</td>
<td>101-122g</td>
<td>175g</td>
<td>80g</td>
<td>30g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Includes sunshine sensor and cable</td>
<td>Converted to NIR, standard camera pre-conversion is ~$500</td>
<td>R has radiometric temp measurements, shaped similar to GoPro, resolution may be too coarse for ranged monitoring</td>
<td>Gimbal sold separately</td>
<td>Includes sunshine sensor and cable</td>
<td>Voids DJI warranty, incident light sensor sold separately ($549)</td>
<td>Voids DJI warranty, incident light sensor sold separately ($549)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software</th>
<th>Cost/Format</th>
<th>Subscription</th>
<th>Perpetual License</th>
<th>Operational Range</th>
<th>Compatible UAVS</th>
<th>Compatible Sensors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SenseFly eMotion 2 &amp; 3</td>
<td>Included with eBee drone</td>
<td>N</td>
<td>N</td>
<td>3km</td>
<td>SenseFly eBee, rotor UAVs</td>
<td>Sequoia, Point and Shoot Cams, eBee compatible</td>
<td>Can export to Pix4D</td>
</tr>
<tr>
<td>MicaSense ATLAS Flight</td>
<td>Free iOS App</td>
<td>N</td>
<td>N</td>
<td>Variable with platform</td>
<td>DJI only</td>
<td>DJI cams, RedEdge, Sequoia</td>
<td>Ability to plan battery change sites during missions</td>
</tr>
<tr>
<td>AV Decision Support System</td>
<td>$3000/year</td>
<td>Y</td>
<td>N</td>
<td>Aerovironment Quantix</td>
<td>Aerovironment Quantix built-in sensors</td>
<td>Aerovironment's proprietary software, comes with tablet controller</td>
<td></td>
</tr>
<tr>
<td>DroneDeploy</td>
<td>Free iOS/Android App, Pay for Premium Features</td>
<td>Y</td>
<td>N</td>
<td>Variable with platform</td>
<td>DJI only</td>
<td>DJI Cam</td>
<td>Streamlined upload to output 3D models/orthomosaics with Pix4D</td>
</tr>
<tr>
<td>Pixhawk (Open Source)</td>
<td>$150-$200 for controller, Open Source</td>
<td>N</td>
<td>N</td>
<td>Variable with platform</td>
<td>Open-Source, Home-built</td>
<td>Sequoia, Point and Shoot Cams</td>
<td>Open source so it will not be “ready to fly” immediately out of box</td>
</tr>
<tr>
<td>Pix4D Mapper Pro</td>
<td>$8700 standard pricing</td>
<td>Y</td>
<td>N</td>
<td>Variable with platform</td>
<td>SenseFly eBee, rotor UAVs (DJI, 3DR)</td>
<td>RedEdge, Sequoia, HD RGB</td>
<td>$4990 Non-commercial license, $3350/mo or $3500/yr standard pricing</td>
</tr>
<tr>
<td>Maps Made Easy Map Pilot</td>
<td>$10 iOS App (iOS v8+)</td>
<td>N</td>
<td>Y</td>
<td>Variable with platform</td>
<td>DJI only</td>
<td>DJI Cam</td>
<td>Calculates battery changes, optimized to create georeferenced orthophotos, 3D models, DSMs, NDVI, etc with the pay as you go map processing fees</td>
</tr>
<tr>
<td>Software</td>
<td>Cost</td>
<td>Subscribe Option</td>
<td>Operating System</td>
<td>Controller Interface</td>
<td>Features / Services</td>
<td>Output</td>
<td>Additional Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Pix4D</td>
<td>$4,990</td>
<td>Y</td>
<td>Windows 64-bit, iOS, Linux Enterprise</td>
<td>Y</td>
<td>Geo referencing with ground control points, photogrammetry to generate DSM, measure volumes based on the DSM, project splitting for efficient processing, automatic aerial triangulation to mosaic with or without camera orientation information, automatic color and brightness correction, more</td>
<td>GeoTIFF</td>
<td>Perpetual license is $4990. Private subscription option is $350 per month. Sequoia integration optimized, it has become an industry standard (along with drone deploy)</td>
</tr>
<tr>
<td>Maps Made Easy</td>
<td>Varies</td>
<td>N</td>
<td>iOS app, Windows or Mac</td>
<td>Y</td>
<td>3D Model stitching, Geo referencing, Volume Measurement (miling), Map Plot (IOS), NDVI, cloud processing, multi-map management for time-lapses</td>
<td>GeoTIFF, Textured 3D Model, JPG, DEM, Pt Cloud, KMZ</td>
<td>Pay as you go credit system. May be very cost-effective for conservancies, since it has variable cost according to resolution and area requiring processing</td>
</tr>
<tr>
<td>AgisoftPhotoscan Standard</td>
<td>$179</td>
<td>N</td>
<td>Mac, Windows, Linux</td>
<td>N</td>
<td>Photogrammetry, Point Cloud Generation, 3D model generation and texturing, Panorama stitching,</td>
<td>JPEG, TIFF, GeoTIFF, PNG, BMP, PPM, KML, PDF, OpenEXR and JPEG Multi-Picture Format (MPF), point cloud formats (Wavefront OBJ, Stanford PLY, XYZ text file format, ASPRS LAS)</td>
<td>Photocan is industry standard, can calculate area and volume (good for % land coverage and biomass estimates). Computationally extensive if generating 3D models</td>
</tr>
<tr>
<td>Agisoft Professional</td>
<td>$3,499</td>
<td>N</td>
<td>Mac, Windows, Linux</td>
<td>N</td>
<td>In addition to standard edition: Point Cloud classification, DEM, DSM, 3TM, GeoReference Orth, Multispec, Python script for automated workflows, ground control points, volume measurement, network processing</td>
<td>JPEG, TIFF, GeoTIFF, PNG, BMP, PPM, KML, PDF, OpenEXR and JPEG Multi-Picture Format (MPF), point cloud formats (Wavefront OBJ, Stanford PLY, XYZ text file format, ASPRS LAS)</td>
<td>Photocan is industry standard, computationally extensive if generating 3D models</td>
</tr>
<tr>
<td>AgVault Mobile Edition</td>
<td>$5 / month</td>
<td>Y</td>
<td>iOS only</td>
<td>Y</td>
<td>NDVI, Mobile Mosaicking</td>
<td>shp, data not readily sharable or exportable</td>
<td>Infield quicktiling and NDVI, Highiy directed at AG market, Advertizes that it processes files ready for Pix4D, suggesting that this is an intermediary software, may not be needed if ArcGIS/R is avai to TRC.</td>
</tr>
<tr>
<td>AgVault Pro Edition</td>
<td>$29 / month</td>
<td>Y</td>
<td>iOS only</td>
<td>Y</td>
<td>NDVI, Mobile Mosaicking</td>
<td>shp, sharable data requires $12/mo &quot;Viewer's license&quot;</td>
<td>Infield quicktiling and NDVI, Highly directed at AG market, Advertizes that it processes files ready for Pix4D, suggesting that this is an intermediary software, may not be needed if ArcGIS/R is avai to TRC.</td>
</tr>
<tr>
<td>Drone2Map by ESRI</td>
<td>$3500 / year</td>
<td>Y</td>
<td>Windows 7, 8, 10 64 bit</td>
<td>N</td>
<td>2D orthomosaics, 3D Mapping, NDVI, DSM, Cloud Processing, ground control points in field from visual reference points</td>
<td>basemaps, gdb, kml, shp, OBJ, pdf</td>
<td>ESRI's attempt to streamline the process of UAV imagery to final outputs, engine based off of Pix4D, beta testing of integration with DroneDeploy</td>
</tr>
<tr>
<td>MicaSense ATLAS Standard</td>
<td>$49 / month</td>
<td>Y</td>
<td>Mac, iOS, Windows</td>
<td>Y</td>
<td>NDVI, NDR, OSAVI, RGB, CIR</td>
<td>Multiband GeoTIFF, DSM (reqs Pix4DPro)</td>
<td>Powered by Pix4D, Dataset outputs user friendly to switch between spectral bands/indices, Not a start to finish software</td>
</tr>
<tr>
<td>MicaSense ATLAS Premium</td>
<td>$99 / month</td>
<td>Y</td>
<td>Mac, iOS, Windows</td>
<td>Y</td>
<td>NDVI, NDR, OSAVI, RGB, CIR, Chlorophyll</td>
<td>Multiband GeoTIFF, DSM (reqs Pix4DPro)</td>
<td>Powered by Pix4D, Dataset outputs user friendly to switch between spectral bands/indices, Not a start to finish software</td>
</tr>
<tr>
<td>DroneDeploy</td>
<td>$83-249 / month</td>
<td>Y</td>
<td>Mac iOS, Windows</td>
<td>Y</td>
<td>NDVI, Elevation, Geo referencing</td>
<td>JPEG, GeoTIFF, shp, Countours, Point Clouds</td>
<td>Used for trial flights at Panofsky, Higher end users get processing priority in queue</td>
</tr>
</tbody>
</table>
**APPENDIX 2.** Publicly accessible databases that house spectral and spatial data, and remote sensing resources.

<table>
<thead>
<tr>
<th>Resource</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS Landsat Data Viewer</td>
<td><a href="https://landsatlook.usgs.gov/viewer.html">https://landsatlook.usgs.gov/viewer.html</a></td>
</tr>
<tr>
<td>Planet Explorer Beta</td>
<td><a href="https://www.planet.com/products/explorer/">https://www.planet.com/products/explorer/</a></td>
</tr>
<tr>
<td>Copernicus Open Access Hub for Sentinel Products</td>
<td><a href="https://scihub.copernicus.eu/">https://scihub.copernicus.eu/</a></td>
</tr>
<tr>
<td>USDA GeoSpatial Data Gateway</td>
<td><a href="https://gdg.sc.egov.usda.gov/GDGOrder.aspx">https://gdg.sc.egov.usda.gov/GDGOrder.aspx</a></td>
</tr>
<tr>
<td>AVIRIS Data Portal</td>
<td><a href="https://aviris.jpl.nasa.gov/alt_locator/">https://aviris.jpl.nasa.gov/alt_locator/</a></td>
</tr>
<tr>
<td>AVIRIS-NG Data Portal</td>
<td><a href="https://avirisng.jpl.nasa.gov/alt_locator/">https://avirisng.jpl.nasa.gov/alt_locator/</a></td>
</tr>
<tr>
<td>NASA LAADS Distributed Active Archive Center (DAAC)</td>
<td><a href="https://ladsweb.modaps.eosdis.nasa.gov/search/">https://ladsweb.modaps.eosdis.nasa.gov/search/</a></td>
</tr>
<tr>
<td>ESA Data Access</td>
<td><a href="https://earth.esa.int/web/guest/data-access/how-to-access-esa-data">https://earth.esa.int/web/guest/data-access/how-to-access-esa-data</a></td>
</tr>
<tr>
<td>EarthData EOSDIS Remote Sensors Table</td>
<td><a href="https://earthdata.nasa.gov/user-resources/remote-sensors">https://earthdata.nasa.gov/user-resources/remote-sensors</a></td>
</tr>
<tr>
<td>NOAA <strong>Comprehensive Large Array-Data Stewardship System</strong></td>
<td><a href="https://www.ncdc.noaa.gov/airs-web/search">https://www.ncdc.noaa.gov/airs-web/search</a></td>
</tr>
</tbody>
</table>
APPENDIX 3. NDVI cell grouping layer: ArcGIS ModelBuilder workflow.

APPENDIX 4. NDVI layer to NIR: ArcGIS ModelBuilder workflow.
APPENDIX 5. Images and descriptions of the plants chosen for classification training data.

*Tamarisk*

Tamarisk is a deciduous shrub that maintains gray to jade-colored branches with feathery-scaled leaves. The leaves are highly reduced and thus individual leaves are not visible from aerial imagery. Their thin branches contribute to their irregular top-down shapes. They are primarily near streams due to their intense water demands. In our specific test plot, we mostly observed small patches (1-3 individual plants) in addition to several stretches of young tamarisk running along the creek bed.

*Shortpod Mustard*

At the time of the RoboHawk flight (September 2017), most shortpod mustard plants on the parcel were desiccated and dead. Typical plants were yellowish-golden shrubs in color and uniform in their circular shape from an aerial perspective. At this particular phonological stage, they are quite distinct from surrounding living vegetation. Additionally, mustard plants were rarely overlapping in distribution allowing for individual plants to be discriminated more easily with their thin branching structure and singular round shape. There was a large abundance of shortpod individuals on the eastern edge of the parcel near the train tracks, which can be a possible vector. It is especially important to note the differences in phenology because live mustard plants will have active chlorophyll and appear green with small yellow flowers while still maintaining similar aerial silhouettes.
Tree of Heaven

Of our four sample invasive plants, tree of heaven was the largest sized species with distinct opposite pinnate leaf pattern. Individual leaves are visible and are lanceolate shape. Fruiting trees can be more easily distinguished as terminal ends of branches are populated with dense bunches of red seed pods. At the time of the RoboHawk flight (September 2017), few other plants displayed significant clusters of red flowers or seeds, making tree of heaven easy to identify and create training data samples from.
Tree Tobacco

Despite having the largest leaf size of our 4 test species, tree tobacco generally has the smallest basal area. At the time of the RoboHawk flight (September 2017), it is observed to be silvery-blue green in color with clusters of yellow tubular flowers. Similar to tamarisk, tree tobacco is observed to be near water sources, as they prefer moist soils. Despite star thistles and sunflowers also having yellow flowers, the blue-silver tint and large leaf area help distinguish tree tobacco.

*LEFT: aerial view of a tree tobacco plant; RIGHT: ground view of the same plant pictured in the left panel.*
APPENDIX 6. Twenty-five texture features calculated for each of the five grey-level bands, with those used in trial classification of tree of heaven indicated with checkmark.

<table>
<thead>
<tr>
<th>Features Calculated</th>
<th>Red Band</th>
<th>Green Band</th>
<th>Blue Band</th>
<th>Green-Red Adjusted Difference</th>
<th>NDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc_skewness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calc_mean</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calc_sd</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calc_entropy</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calc_kurtosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calc_min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calc_meanDeviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_entropy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_sumEntropy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_differenceEntropy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_cProminence</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_cShade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_homogeneity1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_homogeneity2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glcm_dissimilarity</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glrlm_LRLGLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glrlm_LRHGLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glrlm_GLN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glrlm_SRHGLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glrlm_LGLRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glszm_HILAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>glszm_HIASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>glszm_LILAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 7. Details on the R “radiomics” package and R-ArcGIS bridge.

**Documentation on Radiomics R Package**
- http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102107
- https://doi.org/10.1371/journal.pone.0102107.s001
- https://www.rdocumentation.org/packages/radiomics/versions/0.1.1
- http://joelcarlson.github.io/2016/01/07/texture-classification/

**Configuring Texture Feature Tool via R-ArcGIS Bridge**

Download and Install R and RStudio
1. Download R from: [http://cran.us.r-project.org/](http://cran.us.r-project.org/) and follow installation instructions
2. Download RStudio from [https://www.rstudio.com/products/rstudio/download/#download](https://www.rstudio.com/products/rstudio/download/#download)

Download and Configure R-ArcGIS Bridge
- Download and follow instructions from [https://github.com/R-ArcGIS/r-bridge-install](https://github.com/R-ArcGIS/r-bridge-install)

Adding Texture Feature R script to Toolbox
1) Create a new toolbox in the Project folder
2) Add Script, leaving default parameter properties except for Direction, set according to the table below
<table>
<thead>
<tr>
<th>Direction</th>
<th>Display Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Segment Polygon</td>
<td>Shapefile</td>
</tr>
<tr>
<td>Input</td>
<td>UAV Imagery Folder</td>
<td>Folder</td>
</tr>
<tr>
<td>Input</td>
<td>Number Band</td>
<td>Double</td>
</tr>
<tr>
<td>Input</td>
<td>Comma-separated List of Features</td>
<td>String</td>
</tr>
<tr>
<td>Output</td>
<td>Feature Table</td>
<td>Table</td>
</tr>
</tbody>
</table>

**Using the Texture Feature Toolbox to Generate Texture Feature Layers**

- Create shapefile with polygon segments and unique and sequential integer IDs stored in variable called “POLY_ID” which will be used in matching the texture feature values to their original polygons in the shapefile so tables can be used to generate raster layers to add to image classification workflow.
- Inspect segmentation layer output to confirm correct level of detail, and check for and remove fragments smaller than about 10 original raster pixels before assigning the POLY_IDs.
- Run the Texture Feature Tool on one band at a time; note that UAV imagery must be stored in its own folder, with bands each as individual rasters in a format able to be read by R’s raster package (all standard raster formats; see raster documentation).
- List of Features must be given as a list separated by commas with `glcm_`, `glrlm_`, or `glszm_` preceding the feature abbreviation as given in Table 2 below.
- Table output must be saved to a file geodatabase.

<table>
<thead>
<tr>
<th>First Order</th>
<th>GLCM</th>
<th>GLRLM</th>
<th>GLSZM</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>mean</td>
<td>GLN</td>
<td>SAE</td>
</tr>
<tr>
<td>entropy</td>
<td>variance</td>
<td>HGLRE</td>
<td>LAE</td>
</tr>
<tr>
<td>kurtosis</td>
<td>autoCorrelation</td>
<td>LRE</td>
<td>IV</td>
</tr>
<tr>
<td>meanDeviation</td>
<td>cProminence</td>
<td>LRHGLE</td>
<td>SZV</td>
</tr>
<tr>
<td>skewness</td>
<td>cShade</td>
<td>LRLGLE</td>
<td>ZP</td>
</tr>
<tr>
<td>uniformity</td>
<td>cTendancy</td>
<td>LGLRE</td>
<td>LIE</td>
</tr>
<tr>
<td>mean</td>
<td>contrast</td>
<td>RLN</td>
<td>HIE</td>
</tr>
<tr>
<td>median</td>
<td>correlation</td>
<td>RP</td>
<td>LISAE</td>
</tr>
<tr>
<td>max</td>
<td>differenceEntropy</td>
<td>SRE</td>
<td>HISAE</td>
</tr>
<tr>
<td>min</td>
<td>dissimilarity</td>
<td>SRHGLE</td>
<td>LILAE</td>
</tr>
<tr>
<td>diff</td>
<td>energy</td>
<td>SRLGLE</td>
<td>HILAE</td>
</tr>
<tr>
<td>var</td>
<td>entropy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>homogeneity1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sd</td>
<td>homogeneity2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDMN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inverseVariance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maxProb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sumAverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sumEntropy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sumVariance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**APPENDIX 8.** R scripts for texture feature calculation and analysis.

The texture analysis we coded in the R script takes a polygon layer, a folder containing the grey-scale rasters, the name of the single-band raster file to be used, and a comma separated string of features to calculate as inputs. The tool identifies portions of the raster UAV imagery that overlap each polygon, creates matrices that fill the non-overlapping portions of the square with NA, calculates their grey-level co-occurrences, and then the specified texture features. The output is given as an ArcGIS table. The R-ArcGIS bridge works by transporting data into R, conducting an analysis in R, and then transporting the results back to ArcGIS. This is advantageous because it circumvents the 32-bit constraints of ArcGIS Desktop.
tool_exec <- function(tin_params, out_params)
{
  cat(�taste(implementation), unwilling, unwilling)
  # load required packages and install if needed
  if (requireNamespace(implementation, quietly = TRUE))
  install.packages(implementation)
  if (requireNamespace(implementation, quietly = TRUE))
  install.packages(implementation)
  if (requireNamespace(implementation, quietly = TRUE))
  install.packages(implementation)
  package <- c(implementation, implementation, implementation, implementation, implementation, implementation, implementation)
  library(package, require = character.only = TRUE)

  cat(�taste(implementation), unwilling, unwilling)
  # read input and output parameters
  segment_polygons <- in_params
  image_folder <- in_params
  band_name <- in_params
  feature_type <- in_params
  num_table <- out_params

  # read segmented polygon layer and single band of image from rasters folder
  polygon_list <- arg_list(implementation, arg.select(implementation, open(implementation, segment_polygons)))
  num_polygons <- numeric(length(polygon_list), package = "POLY_ID")
  imp <- raster(package = "maps_folder", band_name, sep = ",")

  # identify from input character string which features to see to be calculated
  ghm_ft <- grem(ht = "ghm", features, value = TRUE); ghm_ft <- greem(ht = "ghm", features, value = TRUE); ghm_ft <- greem(ht = "ghm", features, value = TRUE); firstOrder_ft <- greem(ht = "firstOrder", features, value = TRUE)
  ghm_bool <- length(ghm_ft) == 1; ghm_bool <- length(ghm_ft) == 1; ghm_bool <- length(ghm_ft) == 1; firstOrder_bool <- length(firstOrder_ft)

  cat(�taste(implementation), unwilling, unwilling)
  # extract complex function to good numeric function calculations
  ghm_ft <- expr(implementation) as numeric(ghm_ft) as matrix(matrix(matrix, ghm_ft, extent(x)), mask = TRUE)
  firstOrder_ft <- expr(firstOrder_ft)
  ghm_ft <- expr(implementation) as numeric(ghm_ft) as matrix(matrix, ghm_ft, extent(x), mask = TRUE)
  firstOrder_ft <- expr(firstOrder_ft)
  ghm_ft <- expr(implementation) as numeric(ghm_ft) as matrix(matrix, ghm_ft, extent(x), mask = TRUE)
  firstOrder_ft <- expr(firstOrder_ft)
  ghm_ft <- expr(implementation) as numeric(ghm_ft) as matrix(matrix, ghm_ft, extent(x), mask = TRUE)
  firstOrder_ft <- expr(firstOrder_ft)

  cat(�taste(implementation), unwilling, unwilling)
  # calculate texture features
  image_feature <- expression(implementation) as numeric(image_feature)
  feature_type <- expression(implementation)
  num_table <- out_params

  cat(�taste(implementation), unwilling, unwilling)
  # parallelize and calculate texture features
  cl <- makeCluster(nthreads)
  requireDoParallel(cl)
  VEC <- vector(length = length(factors) + 1)
  featureVals <- foreach(implementation = polygon_list, package = "POLY_ID", package = "POLY_ID", package = "POLY_ID")
  vec <- c(implementation)
  if(ghm_bool) vecf <- length(ghm_ft) == 1; if(ghm_bool) vecf <- length(ghm_ft) == 1; if(ghm_bool) vecf <- length(ghm_ft) == 1; if(firstOrder_bool) vecf <- length(firstOrder_ft)
  vecf <- vecf + length(ghm_ft) + length(firstOrder_ft)
  featureVals <- featureVals
  closeAllConnections

  cat(�taste(implementation), unwilling, unwilling)
  # export texture features output array
  band <- subset(band_name, 1, nchar(band_name))
  texture_features <- as.data.frame(featureVals)
  colnames(texture_features) <- c("POLY_ID", texture_features, band, sep = ",")
  if (!is.null(out_table) && out_table != NULL)
  arc.write(out_table, texture_features)
  outpath(out_params)
  return(out_params)
}
tool_exec <- function(in_params, out_params)
{
  cat(paste0("\n", "Loading packages...", "\n"))

  # load required packages and install if needed
  if (!requireNamespace("mclust", quietly = TRUE))
    install.packages("mclust")
  require(mclust)

  # read input and output parameters
  training_data_in = in_params[[1]]
  presence_varname = in_params[[2]]
  feature_str = in_params[[3]]
  predict_data_in = in_params[[4]]
  cut_table = out_params[[1]]

  # read training data and segmented polygon layers as tables
  training_data <- arc.select(arc.open(training_data_in))
  all_data <- arc.select(arc.open(predict_data_in))

  # identify from input character string which features to are to be used in classifying
  features <- strsplit(feature_str, ", ")[[1]]

  cat(paste0("\n", "Fitting model and predicting...", "\n"))

  classes <- training_data[,presence_varname]
  trdata_subset <- training_data[, features]
  mclustMod <- MclustDA(trdata_subset, classes)
  predict_data <- all_data[, features]
  predictions <- predict(mclustMod, predict_data)
  predictions_df <- as.data.frame(predictions)

  cat(paste0("\n", "Writing result datasets...", "\n"))

  # export model predictions [z-scores] to a table
  zscores_table <- data.frame(all_data[,"POLY ID"], predictions_df)
  colnames(zscores_table) <- c("POLY ID", colnames(predictions_df))

  if (!is.null(cut_table) && cut_table !- "NA")
    arc.write(cut_table, zscores_table)

  cat(paste0("\n", "Done.", "\n"))
  return(out_params)
}
APPENDIX 10. Inputs into the cost benefit analysis.

Option 1. Drone purchase

<table>
<thead>
<tr>
<th>Year</th>
<th>Drone</th>
<th>Neutral Density Filter</th>
<th>Case</th>
<th>Imaging software</th>
<th>Pilot Certification</th>
<th>Registration</th>
<th>Sensors</th>
<th>MicroSD</th>
<th>Batteries</th>
<th>Insurance/repair package</th>
<th>Total Cost</th>
<th>Discounted Benefit</th>
<th>NPV of Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1,200.00</td>
<td>$300.00</td>
<td>$250.00</td>
<td>$1,000.00</td>
<td>$150.00</td>
<td>$9.00</td>
<td>$2,200.00</td>
<td>$190.00</td>
<td>$507.00</td>
<td>$140.00</td>
<td>$2,240.00</td>
<td>$2,240.00</td>
<td>$2,220.00</td>
</tr>
<tr>
<td>1</td>
<td>$-</td>
<td>$140.00</td>
<td>$1,245.28</td>
</tr>
<tr>
<td>2</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$1,000.00</td>
<td>$150.00</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$140.00</td>
<td>$3,240.00</td>
<td>$2,829.94</td>
</tr>
<tr>
<td>3</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$68.00</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$68.00</td>
<td>$140.00</td>
<td>$3,240.00</td>
</tr>
<tr>
<td>4</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$68.00</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$68.00</td>
<td>$140.00</td>
<td>$3,240.00</td>
</tr>
<tr>
<td>5</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$68.00</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>$68.00</td>
<td>$140.00</td>
<td>$3,240.00</td>
</tr>
</tbody>
</table>

$1,205.00 | $30.00 | $250.00 | $6,000.00 | $450.00 | $5.00 | $1,100.00 | $468.00 | $3,041.00 | $840.00 | $19,440.00 | $14,225.00 | BCR 1.153 | NPV $3,797.35 |

Total Cost $14,225.00
Total Benefit $16,524.64

Option 2. Contract drone service

<table>
<thead>
<tr>
<th>Year</th>
<th>Service</th>
<th>Benefit</th>
<th>Discounted Benefit</th>
<th>NPV of Cash Flow</th>
<th>Total Cost</th>
<th>Total Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$18,000.00</td>
<td>$3,240.00</td>
<td>$3,240.00</td>
<td>$(14,760.00)</td>
<td>$108,000.00</td>
<td>$33,049.28</td>
</tr>
<tr>
<td>1</td>
<td>$18,000.00</td>
<td>$3,240.00</td>
<td>$3,240.00</td>
<td>$(13,794.39)</td>
<td>BCR 0.3060118462</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$18,000.00</td>
<td>$3,240.00</td>
<td>$2,829.94</td>
<td>$(12,891.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$18,000.00</td>
<td>$3,240.00</td>
<td>$2,644.81</td>
<td>$(12,048.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$18,000.00</td>
<td>$3,240.00</td>
<td>$2,471.78</td>
<td>$(11,260.33)</td>
<td>NPV $3,797.35</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$18,000.00</td>
<td>$3,240.00</td>
<td>$2,310.08</td>
<td>$(10,523.68)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$108,000.00 | $19,440.00 | $16,524.64 | $(75,278.91) |
APPENDIX 11. Discriminant analysis model summary.

Gaussian finite mixture model for classification

<table>
<thead>
<tr>
<th>log.likelihood</th>
<th>n</th>
<th>df</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4632.52</td>
<td>233</td>
<td>859</td>
<td>-13947.48</td>
</tr>
</tbody>
</table>

Classes | n  | Model G |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>173</td>
<td>VEV 4</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>VEV 5</td>
</tr>
</tbody>
</table>

Training classification summary:

<table>
<thead>
<tr>
<th>Predicted Class</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>147</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>51</td>
</tr>
</tbody>
</table>

Training error = 0.1502146
APPENDIX 12. Further applications of UAS technology and justification for image classification techniques.

Detecting Conifer Tree Stress and Mortality
Detection of tree stress and mortality from satellite imagery typically uses phenotypic traits such as brightness, greenness, or wetness (Ferrell et al., 1993; Meddens et al., 2013; Coops et al., 2006). Generally, results are more accurate at higher levels of tree mortality, or in “red attack” stage when needles change color a few years after infestation (Hicke & Logan, 2009; Meddens et al., 2013; Coops et al., 2006). Meddens et al. found, using a time-series of 20 30-meter spatial resolution Landsat images taken between 1996 and 2011, a multi-date method was more accurate at detecting intermediate levels of red-stage mortality (Meddens et al., 2013). The methods were found to be useful for detecting severe insect disturbance (i.e., killing > 25% of trees in the canopy within a pixel), but not for detecting dispersed tree mortality (i.e., single trees) across the forested landscapes (Meddens et al., 2011). Coops et al. used single-date QuickBird (2.5 m spatial resolution) imagery to classify pixels containing red attack damage using methods incorporating Normalized difference vegetation index (NDVI) and a red-green index (RGI), both found to be significant predictors (Coops et al., 2006).

Detection of Other Invasive Plant Species from Satellite and Aerial Imagery
There have also been studies on the detection and mapping of other invasive species including Sahara mustard (Brassica tournefortii), yellow starthistle (Centaurea solstitialis), and perennial pepperweed (Lepidium latifolium) (Nguyen et al., 2012; Lass et al., 2005; Lass et al., 2000; Ge et al., 2007; Lawrence et al., 2005). Classifications using high spectral resolution imagery from sensors like AVIRIS, CASI-II, EO-1 Hyperion, or ASTER, especially when combined with environmental variables have achieved accuracies of 70-80% (Ge et al., 2007; Nguyen et al., 2012; Zhang & Xie, 2012). Margaret Andrew and Susan Ustin mapped perennial pepperweed (Lepidium latifolium) at three sites in California using 3-meter spatial resolution, 128-band HyMap imagery, with aggregated classification and regression tree models (CART) incorporating mixture tuned matched filter (MTMF) results – which essentially indicate how likely a pixel is to be each endmember – and spectral physiological indexes including NDVI and cellulose absorption index (CAI) (Andrew & Ustin, 2008). Detection was successful only at two of the three sites, however, highlighting the importance of environmental context that allows spectral and/or phenological distinction of the target species (Andrew & Ustin, 2008).
Object-Based Image Processing

One study found that in classification of 5cm-resolution UAV-acquired imagery of arid rangeland with shrubs, grasses, and bare soils, inclusion of texture derivatives resulted in significantly higher overall accuracy; optimal texture features as determined by a previous study included entropy, contrast, and standard deviation (Laliberte & Rango, 2008). Another study with similar findings used 7cm-resolution imagery and grass, trees, shrubs as the three vegetated categories, and six least-correlated textures derived from gray-level co-occurrence matrices (GLCM): mean, standard deviation, homogeneity, dissimilarity, entropy, and angular second moment (Feng et al., 2015; Szantoi et al., 2013).
APPENDIX 13. Further examples of imaging methods.

In order for these mosaic maps to be useful for land managers in the context of invasive vegetation, they must be able to rapidly and confidently discern them from native species. Thus, automated classification algorithms require the inclusion of spectral emission data in the near infrared wavelength band. This data is a proxy of variable chlorophyll levels and can inform classification algorithms of spectrally unique plant classes and species. Using the “RandomForest” package for the open-source data analysis software RStudio, Michez and colleagues were able to map a riparian habitat and autonomously identify three invasive weeds with 72-97% accuracy using the additional NIR band (Michez et al., 2016). The random forest classification method can be applied to large data sets with training classes to semi-autonomously classify test groups into representative training categories. It is called a random forest because it utilizes a vast amount of branching decision trees to compare and identify the most discriminating feature variables.

Similarly, Oumer Ahmed’s research group classified vegetation with a random forest package found in the remote sensing software ENVI but used Pix4D for image mosaicking (Ahmed at al., 2017). Using the multi-spectral Parrot Sequoia camera, an Australian group was able to classify vegetation cover classes with accuracies in excess of 70% (Strecha et al., 2012). Led by Christoph Strecha, Pix4D was also used to generate stitched mosaics, however, a maximum likelihood supervised classification tool was run in the remote sensing software ERDAS (Strecha et al., 2012). The maximum likelihood classification tool attempts to group data sets in the most probabilistically likely category based on defined spectral variables. Strecha’s group was able to extract certain vegetation species but found that object-based image classification may yield better results in areas without distinct contrasting flower pigmentation (Strecha et al., 2012).
**APPENDIX 14.** Abridged list of satellite and aerial imagery sources and specifications.

<table>
<thead>
<tr>
<th></th>
<th>NAIP (NDOP)</th>
<th>AVIRIS</th>
<th>AVIRIS NG (Next Generation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Entity</td>
<td>USDA, FSA</td>
<td>NASA, JPL</td>
<td>NASA, JPL</td>
</tr>
<tr>
<td>Coverage</td>
<td>US</td>
<td>Tasking, with coverage of most of Tejon</td>
<td>No current coverage of Tejon</td>
</tr>
<tr>
<td>Operational Lifetime</td>
<td>Ongoing</td>
<td>Depends on funding</td>
<td>Depends on funding</td>
</tr>
<tr>
<td>Instrument/Sensor</td>
<td>RGB-NIR</td>
<td>Imaging Spectrometer</td>
<td>Imaging Spectrometer</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>50 - 60 cm in California</td>
<td>15.3 m over Tejon</td>
<td>4 m</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>Three year cycle, since 2009</td>
<td>Each June, for the past 5 years</td>
<td>N/A</td>
</tr>
<tr>
<td>Available How Soon</td>
<td>CCMs within 2 months, DOQQs within a year</td>
<td>48-72 hours after collection</td>
<td>48-72 hours after collection</td>
</tr>
<tr>
<td>Number of Bands</td>
<td>4</td>
<td>224</td>
<td>481</td>
</tr>
<tr>
<td>Approximate Spectral Range</td>
<td>380 - 950 nm</td>
<td>400 - 2500 nm</td>
<td>380 - 2510 nm</td>
</tr>
<tr>
<td>Relative Spectral Responses</td>
<td>Varies by vendor</td>
<td>Approximately 10 nm wide</td>
<td>Approximately 5 nm wide</td>
</tr>
<tr>
<td>Community/Online Support</td>
<td>Decent</td>
<td>Good</td>
<td>Decent</td>
</tr>
<tr>
<td>File Format(s)</td>
<td>DOQQs, CCM</td>
<td>.tar file with img files</td>
<td>.tar file with img files</td>
</tr>
<tr>
<td>Projection/Datum</td>
<td>UTM NAD83</td>
<td>WGS-84 UTM zone 11</td>
<td>WGS-84 UTM zone 11</td>
</tr>
<tr>
<td>Spatial Accuracy</td>
<td>Horizontal accuracy within six meters of photo-identifiable ground control points, &lt;10 for low altitude flights, greater for higher altitude flights and dependant on conditions</td>
<td>Orthocorrected upwelling radiance radiometrically calibrated to less than 10% absolute</td>
<td>Orthocorrected and atmospherically corrected reflectance data</td>
</tr>
<tr>
<td>Additional Details</td>
<td>Less than 10% cloud cover per quarter quad tile</td>
<td>Orthocorrected and atmospherically corrected reflectance data</td>
<td>Orthocorrected and atmospherically corrected reflectance data</td>
</tr>
<tr>
<td>Operating Entity</td>
<td>Landsat 8 OLI</td>
<td>Landsat 8 TIRS</td>
<td>ASTER</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>Operational Lifetime</td>
<td>May 2013, ongoing</td>
<td>May 2013, ongoing</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>30 m, 15 m panchromatic</td>
<td>100 m, resampled to 30 m</td>
<td>15 m VNIR, 30 m SWIR, 90 m TIR</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>16 day revisit cycle</td>
<td>16 day revisit cycle</td>
<td>16 day revisit cycle</td>
</tr>
<tr>
<td>Available How Soon</td>
<td>Within 24 hours</td>
<td>Within 24 hours</td>
<td>Typically 5 days</td>
</tr>
<tr>
<td>Number of Bands</td>
<td>8</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Approximate Spectral Range</td>
<td>435 - 1384 nm</td>
<td>10600 - 12510 nm</td>
<td>520 - 1165 nm</td>
</tr>
<tr>
<td>File Formats</td>
<td>GeoTIFF, JPG, PNG, BMP</td>
<td>GeoTIFF</td>
<td>HDF-EOS</td>
</tr>
<tr>
<td>Projection/Datum</td>
<td>UTM WGS84</td>
<td>UTM WGS84</td>
<td>UTM WGS84</td>
</tr>
<tr>
<td>Spatial Accuracy</td>
<td>&lt;10m</td>
<td>&lt;10m</td>
<td>4%</td>
</tr>
<tr>
<td>Additional Details</td>
<td>Radiometrically calibrated, orthorectified using ground control points and DEM, surface reflectance available</td>
<td>Radiometrically calibrated, orthorectified using ground control points and DEM, surface reflectance available</td>
<td>Level 1 Precision Terrain Corrected Registered At-Sensor Radiance</td>
</tr>
<tr>
<td>Platform</td>
<td>Landsat 8</td>
<td>Landsat 8</td>
<td>Terra</td>
</tr>
</tbody>
</table>

Additional Details:
- Radiometrically calibrated, orthorectified using ground control points and DEM, surface reflectance available.
- Level 1 Precision Terrain Corrected Registered At-Sensor Radiance.
- Surface reflectance, corrected for atmospheric gases and aerosols, with best possible observation during 8-day period.
- Successor to MODIS.
- TOA reflectances in fixed cartographic geometry, bottom of atmosphere reflectances can be generated using Sentinel-2 Toolbox.
- Many available products; level 1b radiometrically corrected radiances, cloud and moisture products, total precipitable water.
- Orthorectified using GCPs and 30-90m DEM to <10m RMSE positional accuracy, conversion to absolute radiometric values.
<table>
<thead>
<tr>
<th>SCIENCE</th>
<th>MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Category</td>
<td>Conservation Questions</td>
</tr>
<tr>
<td>Invasive Plant Species: Presence, hotspots and other patterns of patial distribution, abundance, spread.</td>
<td>What invasive plant species are present? Where are invasive plants currently located? How abundant are certain invasive species overall? In locations where present, what is the density of the species of concern? Where have invasive species spread through time? How effective have invasive weed management activities been? What changes in area covered and vegetation types are occurring over time?</td>
</tr>
<tr>
<td>Conservation Easement Compliance: Current noncompliance, locations of infractions, types of infractions</td>
<td>What is the current compliance status of each conservation easement? Are cattle grazing in acceptable locations?</td>
</tr>
<tr>
<td>Conifer Health: Health status of conifers, extent and severity of conifer mortality, cause of stress or mortality</td>
<td>What is the mortality rate of conifers? How many are dead (increases in canopy area of dead trees)? How can the Conservancy monitor or track bark beetle infestation? What is the health of conifers? Where is conifer mortality or stress occurring? What is the stress level of conifers on the ranch?</td>
</tr>
<tr>
<td>Observable (Remote or Field) Physical Features</td>
<td>Objective &amp; Measurement Parameters</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Variation in climatic and environmental characteristics including soil moisture, mean temperature, precipitation.</td>
<td>Link environmental variables – which may dictate suitability or preferred characteristics for species habitat to likelihood of invasive species presence. 10m resolution for terrain variables, 0.5km for climatic.</td>
</tr>
<tr>
<td>Terrain variables including slope, aspect, elevation, proximity to streams.</td>
<td>Soil type</td>
</tr>
<tr>
<td>Species-level and vegetation community-level spectral signatures, i.e. radiance in key wavelengths and differentials between them</td>
<td>Characterize full spectral signatures of invasive species, radiometric errors &lt;5%, at spatial resolution fine enough that signal-to-noise ratio sufficient for detecting individual plant species. Create phenologic calendars of invasives and of dominant native species, via ground-truthed &quot;image library&quot; of species, in order to be able to separate changes in spectra due to phenology from those associated with changes species composition, Plant size, foliage and flower color, flowering or not, etc. Characterize spectral signatures of native, uninvaded vegetation communities, with radiometric errors &lt;10%.</td>
</tr>
<tr>
<td>Spatially distinct patches of different vegetation types</td>
<td>Identify spatially distinct patches of invasive species. Spatial resolution 4m or better</td>
</tr>
<tr>
<td>Decreased NDVI due to vegetation die-back</td>
<td>Measure success of weed management strategies by assessing health of managed patches of invasive species, via NDVI. Spatial resolution on par with mean size of plant individuals or groups being monitored, about 4m</td>
</tr>
<tr>
<td>Moisture levels over time</td>
<td>Assess if invasive species e.g. tamarisk are altering local hydrology or soil resources. Spatial resolution ~1km, measurement error &lt;10%.</td>
</tr>
<tr>
<td>Phenology, i.e. changes in spectral signatures or textures over time due to seasonal changes in plants</td>
<td>Create phenologic calendars of invasives and of dominant native species, via ground-truthed &quot;image library&quot; of species, in order to be able to separate changes in spectra and texture due to phenology from those associated with changes species composition. Spatial resolution fine enough that signal-to-noise ratio sufficient to resolve plants.</td>
</tr>
<tr>
<td>Texture of vegetation and land cover</td>
<td></td>
</tr>
<tr>
<td>Canopy height</td>
<td>Measure canopy height, within 10cm vertical accuracy, and with horizontal resolution 10-100cm</td>
</tr>
<tr>
<td>Impermeable surfaces or structures</td>
<td>Determine if structures are being built on conserved lands, imagery with infrared band, to help discriminate between vegetation, water bodies, and impermeable surfaces. Spatial resolution &lt;10m.</td>
</tr>
<tr>
<td>New soil deposits or new water bank areas</td>
<td></td>
</tr>
<tr>
<td>Major change in vegetation cover</td>
<td>Identify areas of major vegetation change e.g. illegal farming or timber harvest activity</td>
</tr>
<tr>
<td>Pasture color changes, not associated with phenology</td>
<td>Assess impact of intensive cattle/grazing activity</td>
</tr>
<tr>
<td>Cattle drive or corral locations</td>
<td></td>
</tr>
<tr>
<td>Fence lines</td>
<td></td>
</tr>
<tr>
<td>Spatially distinct stands of different tree types</td>
<td>Assess overall health over conifer stands using NDVI</td>
</tr>
<tr>
<td>Spectral signatures of healthy, conifers stressed by drought, and conifers stressed by bark beetle pests</td>
<td>Use NDVI and other vegetation indices to distinguish red-attack or earlier phases of beetle infestation of within conifer stands</td>
</tr>
<tr>
<td>Density of canopy cover</td>
<td>Estimate area coverage of conifers within larger pixels of Landsat or Sentinel imagery, via photogrammetric image processing tools or with lidar imagery</td>
</tr>
<tr>
<td>Canopy height</td>
<td>Measure canopy height and foliage density, within 1m vertical accuracy, and with horizontal resolution 10-100cm</td>
</tr>
<tr>
<td>Variation in climatic and environmental characteristics including soil moisture, mean temperature, precipitation.</td>
<td>Determine if there are significant factors besides spatial proximity to previously infected stands, that influence direction and rates of infection</td>
</tr>
<tr>
<td>Terrain variables including slope, aspect, elevation, proximity to streams.</td>
<td></td>
</tr>
<tr>
<td>Soil type</td>
<td></td>
</tr>
</tbody>
</table>
Literature Cited

Ecological Monitoring with UAVs


Unmanned Aerial Systems & Software


Monitoring Conifer Tree Health via Satellite Imagery


Vegetation Mapping and Detection via Satellite Imagery


Remote Sensing of Tamarisk


Invasive Species Detection and Mapping via Remote Sensing


Invasive Plant Species of California


Vegetation Ecology Mapping & Management

Cost-Benefit Analysis of Monitoring

Species Distribution Modeling & Adaptive Management


2014 California BCM (Basin Characterization Model) Downscaled Climate and Hydrology - 30-Year Summaries.” 2014 California BCM (Basin Characterization Model) Downscaled Climate and Hydrology - 30-Year Summaries / California Climate Commons, California Landscape Conservation Cooperative, climate.calcommons.org/node/1129.

Object-Based Image Analysis and Classification Using Texture


Tejon Ranch Conservancy Documents