Teton Valley is an agricultural community characterized by iconic open spaces and mountain views. The Teton River basin is a dynamic system fed by snowmelt from the Teton and Big Hole Mountains that surround the Valley. Teton Valley is part of the Greater Yellowstone Ecosystem and is home to a number of ecologically significant fish as well as wetland habitat. The Teton River runs through the heart of the Valley and drives the local economy by sustaining agriculture and supporting vibrant tourism and recreation industries.

INTRODUCTION

Environmental Problem

Recent increases in snowpack variability and changes in irrigation practices have resulted in decreased late-summer streamflow in the Teton River and its tributaries. This decrease adversely impacts farmers who rely on surface water for irrigation, aquatic species that need cold water and adequate flows, and the dozens of important wildlife species that rely on wetland and fen ecosystems.

OBJECTIVES

Our goal was to implement an incidental groundwater recharge program to augment late-season flows in the Teton River and buffer against annual hydrologic variability. To do so we needed to:

1. Model hydrologic conditions and the potential impact of recharge on streamflow in the Teton River

2. Quantify economic and environmental benefits of augmented flows

Incidental Groundwater Recharge

Increasing incidental groundwater recharge can be utilized to change the timing of when water is available in Teton Valley. Farmers can divert water into their unlined canals beginning in April. From there, it seeps into the ground, flows through the shallow aquifer and emerges in the wetlands and the Teton River later in the summer when flows are needed most.

WHY DOES OUR PROJECT MATTER?

Farmers, the local economy, wildlife species, and habitat all stand to benefit from the implementation of an incidental groundwater recharge program in Teton Valley. This innovative solution allows us to work with the natural system to make water available when it is needed most without having to increase water supply through other, more expensive, means. This model demonstrates great promise in meeting economic and environmental needs simultaneously and could be replicated elsewhere in the arid West to increase late-summer streamflow.

ACKNOWLEDGEMENTS

We would like to extend our deepest thanks to our project partners at LegacyWorks Group, especially Max Ludington. Without his support and guidance, our project would not have been possible. Additionally, we would like to thank our faculty advisor, Dr. Gary Libecap, our PhD advisor, Sam Collie, and our external advisors, Dr. Bruce Aylward and Dr. Rob Van Kirk. We especially appreciate Dr. Van Kirk granting us invaluable access to his Teton Valley Groundwater-Surface Water Model. Finally, we would like to express our gratitude to Amy Verbeten and Friends of the Teton River, as well as all of the wonderful people we met in Teton Valley.

Modeling shows that augmented flows from incidental groundwater recharge occur in the late summer when they are needed most. The magnitude of additional streamflow is determined by the level of farmer participation. Increased flows can improve the fishery by supporting more and larger fish. Value of an improved fishery from a 5% increase in angler days \(= \$34,400 \)

Wetland ecosystem services can be beneficial for the local hydrology, water quality, and local community. Value of wetland ecosystem services \(= \$1,800 \text{ per acre} \)

Stage 1
- Two-year pilot project with two irrigation companies
- Participating farmers reimbursed for the direct costs of conducting incidental groundwater recharge in their canals
Stage 1 will demonstrate how much water can be diverted for recharge, as well as the ease and cost of recharging.

Stage 2
- Partnerships with environmental non-governmental organizations (NGOs) whose missions align with the goal of increasing Teton River streamflow
- NGO funding will be used to continue covering farmers’ costs of recharge and to expand recharge areas to include flooding of marginal land and fields
Stage 2 will determine how much financial benefit farmers will gain from increased flows in the Teton River.

Stage 3
As farmers begin to benefit from recharge efforts, they will be encouraged to engage in the program as paying participants.

Cost of Rented Water
- Average Price: $6.00/acre-foot

Cost of Recharge Water
- To Cover Farmers’ Costs: $1.61/acre-foot
- To Cover Farmers’ Costs & Program Administration: $3.07/acre-foot

Minimal additional streamflow needed for farmers to avoid renting water
\[= 58.8 \text{ cubic feet per second} \]